Metamath Proof Explorer


Theorem relsset

Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion relsset Rel SSet

Proof

Step Hyp Ref Expression
1 df-sset SSet = ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) )
2 difss ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) ) ⊆ ( V × V )
3 1 2 eqsstri SSet ⊆ ( V × V )
4 df-rel ( Rel SSet SSet ⊆ ( V × V ) )
5 3 4 mpbir Rel SSet