Metamath Proof Explorer


Definition df-sset

Description: Define the subset class. For the value, see brsset . (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion df-sset SSet = ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csset SSet
1 cvv V
2 1 1 cxp ( V × V )
3 cep E
4 1 3 cdif ( V ∖ E )
5 3 4 ctxp ( E ⊗ ( V ∖ E ) )
6 5 crn ran ( E ⊗ ( V ∖ E ) )
7 2 6 cdif ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) )
8 0 7 wceq SSet = ( ( V × V ) ∖ ran ( E ⊗ ( V ∖ E ) ) )