Metamath Proof Explorer


Theorem brpprod3b

Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014)

Ref Expression
Hypotheses brpprod3.1 𝑋 ∈ V
brpprod3.2 𝑌 ∈ V
brpprod3.3 𝑍 ∈ V
Assertion brpprod3b ( 𝑋 pprod ( 𝑅 , 𝑆 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ∃ 𝑧𝑤 ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 𝑅 𝑌𝑤 𝑆 𝑍 ) )

Proof

Step Hyp Ref Expression
1 brpprod3.1 𝑋 ∈ V
2 brpprod3.2 𝑌 ∈ V
3 brpprod3.3 𝑍 ∈ V
4 pprodcnveq pprod ( 𝑅 , 𝑆 ) = pprod ( 𝑅 , 𝑆 )
5 4 breqi ( 𝑋 pprod ( 𝑅 , 𝑆 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ 𝑋 pprod ( 𝑅 , 𝑆 ) ⟨ 𝑌 , 𝑍 ⟩ )
6 opex 𝑌 , 𝑍 ⟩ ∈ V
7 1 6 brcnv ( 𝑋 pprod ( 𝑅 , 𝑆 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ⟨ 𝑌 , 𝑍 ⟩ pprod ( 𝑅 , 𝑆 ) 𝑋 )
8 2 3 1 brpprod3a ( ⟨ 𝑌 , 𝑍 ⟩ pprod ( 𝑅 , 𝑆 ) 𝑋 ↔ ∃ 𝑧𝑤 ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑌 𝑅 𝑧𝑍 𝑆 𝑤 ) )
9 7 8 bitri ( 𝑋 pprod ( 𝑅 , 𝑆 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ∃ 𝑧𝑤 ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑌 𝑅 𝑧𝑍 𝑆 𝑤 ) )
10 biid ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ↔ 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ )
11 vex 𝑧 ∈ V
12 2 11 brcnv ( 𝑌 𝑅 𝑧𝑧 𝑅 𝑌 )
13 vex 𝑤 ∈ V
14 3 13 brcnv ( 𝑍 𝑆 𝑤𝑤 𝑆 𝑍 )
15 10 12 14 3anbi123i ( ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑌 𝑅 𝑧𝑍 𝑆 𝑤 ) ↔ ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 𝑅 𝑌𝑤 𝑆 𝑍 ) )
16 15 2exbii ( ∃ 𝑧𝑤 ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑌 𝑅 𝑧𝑍 𝑆 𝑤 ) ↔ ∃ 𝑧𝑤 ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 𝑅 𝑌𝑤 𝑆 𝑍 ) )
17 9 16 bitri ( 𝑋 pprod ( 𝑅 , 𝑆 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ∃ 𝑧𝑤 ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 𝑅 𝑌𝑤 𝑆 𝑍 ) )
18 5 17 bitri ( 𝑋 pprod ( 𝑅 , 𝑆 ) ⟨ 𝑌 , 𝑍 ⟩ ↔ ∃ 𝑧𝑤 ( 𝑋 = ⟨ 𝑧 , 𝑤 ⟩ ∧ 𝑧 𝑅 𝑌𝑤 𝑆 𝑍 ) )