Metamath Proof Explorer


Theorem brrange

Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brdomain.1 AV
brdomain.2 BV
Assertion brrange A𝖱𝖺𝗇𝗀𝖾BB=ranA

Proof

Step Hyp Ref Expression
1 brdomain.1 AV
2 brdomain.2 BV
3 1 2 brimage A𝖨𝗆𝖺𝗀𝖾2ndV×VBB=2ndV×VA
4 df-range 𝖱𝖺𝗇𝗀𝖾=𝖨𝗆𝖺𝗀𝖾2ndV×V
5 4 breqi A𝖱𝖺𝗇𝗀𝖾BA𝖨𝗆𝖺𝗀𝖾2ndV×VB
6 dfrn5 ranA=2ndV×VA
7 6 eqeq2i B=ranAB=2ndV×VA
8 3 5 7 3bitr4i A𝖱𝖺𝗇𝗀𝖾BB=ranA