Metamath Proof Explorer


Theorem brrange

Description: Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brdomain.1 A V
brdomain.2 B V
Assertion brrange A 𝖱𝖺𝗇𝗀𝖾 B B = ran A

Proof

Step Hyp Ref Expression
1 brdomain.1 A V
2 brdomain.2 B V
3 1 2 brimage A 𝖨𝗆𝖺𝗀𝖾 2 nd V × V B B = 2 nd V × V A
4 df-range 𝖱𝖺𝗇𝗀𝖾 = 𝖨𝗆𝖺𝗀𝖾 2 nd V × V
5 4 breqi A 𝖱𝖺𝗇𝗀𝖾 B A 𝖨𝗆𝖺𝗀𝖾 2 nd V × V B
6 dfrn5 ran A = 2 nd V × V A
7 6 eqeq2i B = ran A B = 2 nd V × V A
8 3 5 7 3bitr4i A 𝖱𝖺𝗇𝗀𝖾 B B = ran A