Metamath Proof Explorer


Theorem brdomaing

Description: Closed form of brdomain . (Contributed by Scott Fenton, 2-May-2014)

Ref Expression
Assertion brdomaing AVBWA𝖣𝗈𝗆𝖺𝗂𝗇BB=domA

Proof

Step Hyp Ref Expression
1 breq1 a=Aa𝖣𝗈𝗆𝖺𝗂𝗇bA𝖣𝗈𝗆𝖺𝗂𝗇b
2 dmeq a=Adoma=domA
3 2 eqeq2d a=Ab=domab=domA
4 1 3 bibi12d a=Aa𝖣𝗈𝗆𝖺𝗂𝗇bb=domaA𝖣𝗈𝗆𝖺𝗂𝗇bb=domA
5 breq2 b=BA𝖣𝗈𝗆𝖺𝗂𝗇bA𝖣𝗈𝗆𝖺𝗂𝗇B
6 eqeq1 b=Bb=domAB=domA
7 5 6 bibi12d b=BA𝖣𝗈𝗆𝖺𝗂𝗇bb=domAA𝖣𝗈𝗆𝖺𝗂𝗇BB=domA
8 vex aV
9 vex bV
10 8 9 brdomain a𝖣𝗈𝗆𝖺𝗂𝗇bb=doma
11 4 7 10 vtocl2g AVBWA𝖣𝗈𝗆𝖺𝗂𝗇BB=domA