| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 Domain 𝑏 ↔ 𝐴 Domain 𝑏 ) ) |
| 2 |
|
dmeq |
⊢ ( 𝑎 = 𝐴 → dom 𝑎 = dom 𝐴 ) |
| 3 |
2
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 = dom 𝑎 ↔ 𝑏 = dom 𝐴 ) ) |
| 4 |
1 3
|
bibi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 Domain 𝑏 ↔ 𝑏 = dom 𝑎 ) ↔ ( 𝐴 Domain 𝑏 ↔ 𝑏 = dom 𝐴 ) ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 Domain 𝑏 ↔ 𝐴 Domain 𝐵 ) ) |
| 6 |
|
eqeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 = dom 𝐴 ↔ 𝐵 = dom 𝐴 ) ) |
| 7 |
5 6
|
bibi12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 Domain 𝑏 ↔ 𝑏 = dom 𝐴 ) ↔ ( 𝐴 Domain 𝐵 ↔ 𝐵 = dom 𝐴 ) ) ) |
| 8 |
|
vex |
⊢ 𝑎 ∈ V |
| 9 |
|
vex |
⊢ 𝑏 ∈ V |
| 10 |
8 9
|
brdomain |
⊢ ( 𝑎 Domain 𝑏 ↔ 𝑏 = dom 𝑎 ) |
| 11 |
4 7 10
|
vtocl2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 Domain 𝐵 ↔ 𝐵 = dom 𝐴 ) ) |