Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 Range 𝑏 ↔ 𝐴 Range 𝑏 ) ) |
2 |
|
rneq |
⊢ ( 𝑎 = 𝐴 → ran 𝑎 = ran 𝐴 ) |
3 |
2
|
eqeq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 = ran 𝑎 ↔ 𝑏 = ran 𝐴 ) ) |
4 |
1 3
|
bibi12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 Range 𝑏 ↔ 𝑏 = ran 𝑎 ) ↔ ( 𝐴 Range 𝑏 ↔ 𝑏 = ran 𝐴 ) ) ) |
5 |
|
breq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 Range 𝑏 ↔ 𝐴 Range 𝐵 ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 = ran 𝐴 ↔ 𝐵 = ran 𝐴 ) ) |
7 |
5 6
|
bibi12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 Range 𝑏 ↔ 𝑏 = ran 𝐴 ) ↔ ( 𝐴 Range 𝐵 ↔ 𝐵 = ran 𝐴 ) ) ) |
8 |
|
vex |
⊢ 𝑎 ∈ V |
9 |
|
vex |
⊢ 𝑏 ∈ V |
10 |
8 9
|
brrange |
⊢ ( 𝑎 Range 𝑏 ↔ 𝑏 = ran 𝑎 ) |
11 |
4 7 10
|
vtocl2g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 Range 𝐵 ↔ 𝐵 = ran 𝐴 ) ) |