Metamath Proof Explorer


Theorem brtp

Description: A necessary and sufficient condition for two sets to be related under a binary relation which is an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Hypotheses brtp.1 XV
brtp.2 YV
Assertion brtp XABCDEFYX=AY=BX=CY=DX=EY=F

Proof

Step Hyp Ref Expression
1 brtp.1 XV
2 brtp.2 YV
3 df-br XABCDEFYXYABCDEF
4 opex XYV
5 4 eltp XYABCDEFXY=ABXY=CDXY=EF
6 1 2 opth XY=ABX=AY=B
7 1 2 opth XY=CDX=CY=D
8 1 2 opth XY=EFX=EY=F
9 6 7 8 3orbi123i XY=ABXY=CDXY=EFX=AY=BX=CY=DX=EY=F
10 3 5 9 3bitri XABCDEFYX=AY=BX=CY=DX=EY=F