Metamath Proof Explorer


Theorem brtp

Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011)

Ref Expression
Hypotheses brtp.1 X V
brtp.2 Y V
Assertion brtp X A B C D E F Y X = A Y = B X = C Y = D X = E Y = F

Proof

Step Hyp Ref Expression
1 brtp.1 X V
2 brtp.2 Y V
3 df-br X A B C D E F Y X Y A B C D E F
4 opex X Y V
5 4 eltp X Y A B C D E F X Y = A B X Y = C D X Y = E F
6 1 2 opth X Y = A B X = A Y = B
7 1 2 opth X Y = C D X = C Y = D
8 1 2 opth X Y = E F X = E Y = F
9 6 7 8 3orbi123i X Y = A B X Y = C D X Y = E F X = A Y = B X = C Y = D X = E Y = F
10 3 5 9 3bitri X A B C D E F Y X = A Y = B X = C Y = D X = E Y = F