Metamath Proof Explorer


Theorem brvvdif

Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018)

Ref Expression
Assertion brvvdif AVBWAV×VRB¬ARB

Proof

Step Hyp Ref Expression
1 opelvvdif AVBWABV×VR¬ABR
2 df-br AV×VRBABV×VR
3 df-br ARBABR
4 3 notbii ¬ARB¬ABR
5 1 2 4 3bitr4g AVBWAV×VRB¬ARB