Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brvvdif | |- ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> -. A R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelvvdif | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) ) |
|
| 2 | df-br | |- ( A ( ( _V X. _V ) \ R ) B <-> <. A , B >. e. ( ( _V X. _V ) \ R ) ) |
|
| 3 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
| 4 | 3 | notbii | |- ( -. A R B <-> -. <. A , B >. e. R ) |
| 5 | 1 2 4 | 3bitr4g | |- ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> -. A R B ) ) |