Metamath Proof Explorer


Theorem brvvdif

Description: Binary relation with the complement under the universal class of ordered pairs. (Contributed by Peter Mazsa, 9-Nov-2018)

Ref Expression
Assertion brvvdif
|- ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> -. A R B ) )

Proof

Step Hyp Ref Expression
1 opelvvdif
 |-  ( ( A e. V /\ B e. W ) -> ( <. A , B >. e. ( ( _V X. _V ) \ R ) <-> -. <. A , B >. e. R ) )
2 df-br
 |-  ( A ( ( _V X. _V ) \ R ) B <-> <. A , B >. e. ( ( _V X. _V ) \ R ) )
3 df-br
 |-  ( A R B <-> <. A , B >. e. R )
4 3 notbii
 |-  ( -. A R B <-> -. <. A , B >. e. R )
5 1 2 4 3bitr4g
 |-  ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> -. A R B ) )