Description: Binary relation with the complement under the universal class of ordered pairs is the same as with universal complement. (Contributed by Peter Mazsa, 28-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brvbrvvdif | |- ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> A ( _V \ R ) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brvvdif | |- ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> -. A R B ) ) |
|
| 2 | brvdif | |- ( A ( _V \ R ) B <-> -. A R B ) |
|
| 3 | 1 2 | bitr4di | |- ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> A ( _V \ R ) B ) ) |