Metamath Proof Explorer


Theorem brvbrvvdif

Description: Binary relation with the complement under the universal class of ordered pairs is the same as with universal complement. (Contributed by Peter Mazsa, 28-Nov-2018)

Ref Expression
Assertion brvbrvvdif
|- ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> A ( _V \ R ) B ) )

Proof

Step Hyp Ref Expression
1 brvvdif
 |-  ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> -. A R B ) )
2 brvdif
 |-  ( A ( _V \ R ) B <-> -. A R B )
3 1 2 bitr4di
 |-  ( ( A e. V /\ B e. W ) -> ( A ( ( _V X. _V ) \ R ) B <-> A ( _V \ R ) B ) )