Metamath Proof Explorer


Theorem brvbrvvdif

Description: Binary relation with the complement under the universal class of ordered pairs is the same as with universal complement. (Contributed by Peter Mazsa, 28-Nov-2018)

Ref Expression
Assertion brvbrvvdif ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( ( V × V ) ∖ 𝑅 ) 𝐵𝐴 ( V ∖ 𝑅 ) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 brvvdif ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( ( V × V ) ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 ) )
2 brvdif ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 )
3 1 2 bitr4di ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( ( V × V ) ∖ 𝑅 ) 𝐵𝐴 ( V ∖ 𝑅 ) 𝐵 ) )