Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | brvdif | ⊢ ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brv | ⊢ 𝐴 V 𝐵 | |
2 | brdif | ⊢ ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ( 𝐴 V 𝐵 ∧ ¬ 𝐴 𝑅 𝐵 ) ) | |
3 | 1 2 | mpbiran | ⊢ ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 ) |