Metamath Proof Explorer


Theorem brvdif

Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018)

Ref Expression
Assertion brvdif ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 )

Proof

Step Hyp Ref Expression
1 brv 𝐴 V 𝐵
2 brdif ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ( 𝐴 V 𝐵 ∧ ¬ 𝐴 𝑅 𝐵 ) )
3 1 2 mpbiran ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 )