Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | brvdif2 | ⊢ ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brvdif | ⊢ ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 ) | |
2 | df-br | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) | |
3 | 1 2 | xchbinx | ⊢ ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |