Metamath Proof Explorer


Theorem brvdif2

Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018)

Ref Expression
Assertion brvdif2 ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )

Proof

Step Hyp Ref Expression
1 brvdif ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ 𝐴 𝑅 𝐵 )
2 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
3 1 2 xchbinx ( 𝐴 ( V ∖ 𝑅 ) 𝐵 ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )