Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
brvdif2
Next ⟩
brvvdif
Metamath Proof Explorer
Ascii
Unicode
Theorem
brvdif2
Description:
Binary relation with universal complement.
(Contributed by
Peter Mazsa
, 14-Jul-2018)
Ref
Expression
Assertion
brvdif2
⊢
A
V
∖
R
B
↔
¬
A
B
∈
R
Proof
Step
Hyp
Ref
Expression
1
brvdif
⊢
A
V
∖
R
B
↔
¬
A
R
B
2
df-br
⊢
A
R
B
↔
A
B
∈
R
3
1
2
xchbinx
⊢
A
V
∖
R
B
↔
¬
A
B
∈
R