Metamath Proof Explorer


Theorem brvdif

Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018)

Ref Expression
Assertion brvdif AVRB¬ARB

Proof

Step Hyp Ref Expression
1 brv AVB
2 brdif AVRBAVB¬ARB
3 1 2 mpbiran AVRB¬ARB