Description: Binary relation with universal complement is the negation of the relation. (Contributed by Peter Mazsa, 1-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | brvdif | |- ( A ( _V \ R ) B <-> -. A R B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brv | |- A _V B |
|
2 | brdif | |- ( A ( _V \ R ) B <-> ( A _V B /\ -. A R B ) ) |
|
3 | 1 2 | mpbiran | |- ( A ( _V \ R ) B <-> -. A R B ) |