Description: Binary relation with universal complement. (Contributed by Peter Mazsa, 14-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brvdif2 | |- ( A ( _V \ R ) B <-> -. <. A , B >. e. R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brvdif | |- ( A ( _V \ R ) B <-> -. A R B ) |
|
| 2 | df-br | |- ( A R B <-> <. A , B >. e. R ) |
|
| 3 | 1 2 | xchbinx | |- ( A ( _V \ R ) B <-> -. <. A , B >. e. R ) |