Metamath Proof Explorer


Theorem brwdom

Description: Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion brwdom YVX*YX=zz:YontoX

Proof

Step Hyp Ref Expression
1 elex YVYV
2 relwdom Rel*
3 2 brrelex1i X*YXV
4 3 a1i YVX*YXV
5 0ex V
6 eleq1a VX=XV
7 5 6 ax-mp X=XV
8 forn z:YontoXranz=X
9 vex zV
10 9 rnex ranzV
11 8 10 eqeltrrdi z:YontoXXV
12 11 exlimiv zz:YontoXXV
13 7 12 jaoi X=zz:YontoXXV
14 13 a1i YVX=zz:YontoXXV
15 eqeq1 x=Xx=X=
16 foeq3 x=Xz:yontoxz:yontoX
17 16 exbidv x=Xzz:yontoxzz:yontoX
18 15 17 orbi12d x=Xx=zz:yontoxX=zz:yontoX
19 foeq2 y=Yz:yontoXz:YontoX
20 19 exbidv y=Yzz:yontoXzz:YontoX
21 20 orbi2d y=YX=zz:yontoXX=zz:YontoX
22 df-wdom *=xy|x=zz:yontox
23 18 21 22 brabg XVYVX*YX=zz:YontoX
24 23 expcom YVXVX*YX=zz:YontoX
25 4 14 24 pm5.21ndd YVX*YX=zz:YontoX
26 1 25 syl YVX*YX=zz:YontoX