Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
brxp
Next ⟩
pwvrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
brxp
Description:
Binary relation on a Cartesian product.
(Contributed by
NM
, 22-Apr-2004)
Ref
Expression
Assertion
brxp
⊢
A
C
×
D
B
↔
A
∈
C
∧
B
∈
D
Proof
Step
Hyp
Ref
Expression
1
df-br
⊢
A
C
×
D
B
↔
A
B
∈
C
×
D
2
opelxp
⊢
A
B
∈
C
×
D
↔
A
∈
C
∧
B
∈
D
3
1
2
bitri
⊢
A
C
×
D
B
↔
A
∈
C
∧
B
∈
D