Metamath Proof Explorer


Theorem brxrn2

Description: A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020)

Ref Expression
Assertion brxrn2 AVARSBxyB=xyARxASy

Proof

Step Hyp Ref Expression
1 xrnss3v RSV×V×V
2 1 brel ARSBAVBV×V
3 2 simprd ARSBBV×V
4 elvv BV×VxyB=xy
5 3 4 sylib ARSBxyB=xy
6 5 pm4.71ri ARSBxyB=xyARSB
7 19.41vv xyB=xyARSBxyB=xyARSB
8 breq2 B=xyARSBARSxy
9 8 pm5.32i B=xyARSBB=xyARSxy
10 9 2exbii xyB=xyARSBxyB=xyARSxy
11 6 7 10 3bitr2i ARSBxyB=xyARSxy
12 brxrn AVxVyVARSxyARxASy
13 12 el3v23 AVARSxyARxASy
14 13 anbi2d AVB=xyARSxyB=xyARxASy
15 3anass B=xyARxASyB=xyARxASy
16 14 15 bitr4di AVB=xyARSxyB=xyARxASy
17 16 2exbidv AVxyB=xyARSxyxyB=xyARxASy
18 11 17 bitrid AVARSBxyB=xyARxASy