Metamath Proof Explorer


Theorem btwncolinear4

Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion btwncolinear4 N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B B Colinear C A

Proof

Step Hyp Ref Expression
1 btwncolinear1 N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B A Colinear B C
2 colinearperm3 N A 𝔼 N B 𝔼 N C 𝔼 N A Colinear B C B Colinear C A
3 1 2 sylibd N A 𝔼 N B 𝔼 N C 𝔼 N C Btwn A B B Colinear C A