Metamath Proof Explorer


Theorem btwncom

Description: Betweenness commutes. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwncom NA𝔼NB𝔼NC𝔼NABtwnBCABtwnCB

Proof

Step Hyp Ref Expression
1 btwncomim NA𝔼NB𝔼NC𝔼NABtwnBCABtwnCB
2 3ancomb A𝔼NB𝔼NC𝔼NA𝔼NC𝔼NB𝔼N
3 btwncomim NA𝔼NC𝔼NB𝔼NABtwnCBABtwnBC
4 2 3 sylan2b NA𝔼NB𝔼NC𝔼NABtwnCBABtwnBC
5 1 4 impbid NA𝔼NB𝔼NC𝔼NABtwnBCABtwnCB