Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Betweenness properties
btwncom
Next ⟩
btwncomand
Metamath Proof Explorer
Ascii
Unicode
Theorem
btwncom
Description:
Betweenness commutes.
(Contributed by
Scott Fenton
, 12-Jun-2013)
Ref
Expression
Assertion
btwncom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
Btwn
B
C
↔
A
Btwn
C
B
Proof
Step
Hyp
Ref
Expression
1
btwncomim
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
Btwn
B
C
→
A
Btwn
C
B
2
3ancomb
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
↔
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
3
btwncomim
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
→
A
Btwn
C
B
→
A
Btwn
B
C
4
2
3
sylan2b
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
Btwn
C
B
→
A
Btwn
B
C
5
1
4
impbid
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
Btwn
B
C
↔
A
Btwn
C
B