Metamath Proof Explorer


Theorem btwncom

Description: Betweenness commutes. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwncom N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B

Proof

Step Hyp Ref Expression
1 btwncomim N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B
2 3ancomb A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N C 𝔼 N B 𝔼 N
3 btwncomim N A 𝔼 N C 𝔼 N B 𝔼 N A Btwn C B A Btwn B C
4 2 3 sylan2b N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn C B A Btwn B C
5 1 4 impbid N A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C A Btwn C B