Metamath Proof Explorer


Theorem btwncomand

Description: Deduction form of btwncom . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses btwncomand.1 φN
btwncomand.2 φA𝔼N
btwncomand.3 φB𝔼N
btwncomand.4 φC𝔼N
btwncomand.5 φψABtwnBC
Assertion btwncomand φψABtwnCB

Proof

Step Hyp Ref Expression
1 btwncomand.1 φN
2 btwncomand.2 φA𝔼N
3 btwncomand.3 φB𝔼N
4 btwncomand.4 φC𝔼N
5 btwncomand.5 φψABtwnBC
6 btwncom NA𝔼NB𝔼NC𝔼NABtwnBCABtwnCB
7 1 2 3 4 6 syl13anc φABtwnBCABtwnCB
8 7 adantr φψABtwnBCABtwnCB
9 5 8 mpbid φψABtwnCB