Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Betweenness properties
btwncomand
Next ⟩
btwntriv1
Metamath Proof Explorer
Ascii
Unicode
Theorem
btwncomand
Description:
Deduction form of
btwncom
.
(Contributed by
Scott Fenton
, 14-Oct-2013)
Ref
Expression
Hypotheses
btwncomand.1
⊢
φ
→
N
∈
ℕ
btwncomand.2
⊢
φ
→
A
∈
𝔼
⁡
N
btwncomand.3
⊢
φ
→
B
∈
𝔼
⁡
N
btwncomand.4
⊢
φ
→
C
∈
𝔼
⁡
N
btwncomand.5
⊢
φ
∧
ψ
→
A
Btwn
B
C
Assertion
btwncomand
⊢
φ
∧
ψ
→
A
Btwn
C
B
Proof
Step
Hyp
Ref
Expression
1
btwncomand.1
⊢
φ
→
N
∈
ℕ
2
btwncomand.2
⊢
φ
→
A
∈
𝔼
⁡
N
3
btwncomand.3
⊢
φ
→
B
∈
𝔼
⁡
N
4
btwncomand.4
⊢
φ
→
C
∈
𝔼
⁡
N
5
btwncomand.5
⊢
φ
∧
ψ
→
A
Btwn
B
C
6
btwncom
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
→
A
Btwn
B
C
↔
A
Btwn
C
B
7
1
2
3
4
6
syl13anc
⊢
φ
→
A
Btwn
B
C
↔
A
Btwn
C
B
8
7
adantr
⊢
φ
∧
ψ
→
A
Btwn
B
C
↔
A
Btwn
C
B
9
5
8
mpbid
⊢
φ
∧
ψ
→
A
Btwn
C
B