Metamath Proof Explorer


Theorem btwncomand

Description: Deduction form of btwncom . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses btwncomand.1
|- ( ph -> N e. NN )
btwncomand.2
|- ( ph -> A e. ( EE ` N ) )
btwncomand.3
|- ( ph -> B e. ( EE ` N ) )
btwncomand.4
|- ( ph -> C e. ( EE ` N ) )
btwncomand.5
|- ( ( ph /\ ps ) -> A Btwn <. B , C >. )
Assertion btwncomand
|- ( ( ph /\ ps ) -> A Btwn <. C , B >. )

Proof

Step Hyp Ref Expression
1 btwncomand.1
 |-  ( ph -> N e. NN )
2 btwncomand.2
 |-  ( ph -> A e. ( EE ` N ) )
3 btwncomand.3
 |-  ( ph -> B e. ( EE ` N ) )
4 btwncomand.4
 |-  ( ph -> C e. ( EE ` N ) )
5 btwncomand.5
 |-  ( ( ph /\ ps ) -> A Btwn <. B , C >. )
6 btwncom
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. <-> A Btwn <. C , B >. ) )
7 1 2 3 4 6 syl13anc
 |-  ( ph -> ( A Btwn <. B , C >. <-> A Btwn <. C , B >. ) )
8 7 adantr
 |-  ( ( ph /\ ps ) -> ( A Btwn <. B , C >. <-> A Btwn <. C , B >. ) )
9 5 8 mpbid
 |-  ( ( ph /\ ps ) -> A Btwn <. C , B >. )