Metamath Proof Explorer


Theorem btwncomand

Description: Deduction form of btwncom . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses btwncomand.1 ( 𝜑𝑁 ∈ ℕ )
btwncomand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
btwncomand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
btwncomand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
btwncomand.5 ( ( 𝜑𝜓 ) → 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ )
Assertion btwncomand ( ( 𝜑𝜓 ) → 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 btwncomand.1 ( 𝜑𝑁 ∈ ℕ )
2 btwncomand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 btwncomand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 btwncomand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 btwncomand.5 ( ( 𝜑𝜓 ) → 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ )
6 btwncom ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ) )
7 1 2 3 4 6 syl13anc ( 𝜑 → ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ) )
8 7 adantr ( ( 𝜑𝜓 ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ ) )
9 5 8 mpbid ( ( 𝜑𝜓 ) → 𝐴 Btwn ⟨ 𝐶 , 𝐵 ⟩ )