| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwntriv2 |  |-  ( ( N e. NN /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> A Btwn <. B , A >. ) | 
						
							| 2 | 1 | 3com23 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A Btwn <. B , A >. ) | 
						
							| 3 |  | simp1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 4 |  | simp2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | simp3 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 6 |  | btwncom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( A Btwn <. A , B >. <-> A Btwn <. B , A >. ) ) | 
						
							| 7 | 3 4 4 5 6 | syl13anc |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A Btwn <. A , B >. <-> A Btwn <. B , A >. ) ) | 
						
							| 8 | 2 7 | mpbird |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A Btwn <. A , B >. ) |