Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) |
2 |
|
simp2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
3 |
|
simp3 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
4 |
|
axsegcon |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. B , x >. Cgr <. B , B >. ) ) |
5 |
1 2 3 3 3 4
|
syl122anc |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. B , x >. Cgr <. B , B >. ) ) |
6 |
|
simpl1 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
7 |
|
simpl3 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
8 |
|
simpr |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
9 |
|
axcgrid |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. B , x >. Cgr <. B , B >. -> B = x ) ) |
10 |
6 7 8 7 9
|
syl13anc |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( <. B , x >. Cgr <. B , B >. -> B = x ) ) |
11 |
|
opeq2 |
|- ( B = x -> <. A , B >. = <. A , x >. ) |
12 |
11
|
breq2d |
|- ( B = x -> ( B Btwn <. A , B >. <-> B Btwn <. A , x >. ) ) |
13 |
12
|
biimprd |
|- ( B = x -> ( B Btwn <. A , x >. -> B Btwn <. A , B >. ) ) |
14 |
10 13
|
syl6 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( <. B , x >. Cgr <. B , B >. -> ( B Btwn <. A , x >. -> B Btwn <. A , B >. ) ) ) |
15 |
14
|
impd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( ( <. B , x >. Cgr <. B , B >. /\ B Btwn <. A , x >. ) -> B Btwn <. A , B >. ) ) |
16 |
15
|
ancomsd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( ( B Btwn <. A , x >. /\ <. B , x >. Cgr <. B , B >. ) -> B Btwn <. A , B >. ) ) |
17 |
16
|
rexlimdva |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( E. x e. ( EE ` N ) ( B Btwn <. A , x >. /\ <. B , x >. Cgr <. B , B >. ) -> B Btwn <. A , B >. ) ) |
18 |
5 17
|
mpd |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B Btwn <. A , B >. ) |