| Step |
Hyp |
Ref |
Expression |
| 1 |
|
btwntriv2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> C Btwn <. A , C >. ) |
| 2 |
1
|
3adant3r2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C Btwn <. A , C >. ) |
| 3 |
|
simpl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
| 4 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 5 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 6 |
|
simpr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 7 |
|
axpasch |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ C Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) ) ) |
| 8 |
3 4 5 6 5 6 7
|
syl132anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ C Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) ) ) |
| 9 |
2 8
|
mpan2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) ) ) |
| 10 |
|
simpll |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
| 11 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
| 12 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
| 13 |
|
axbtwnid |
|- ( ( N e. NN /\ x e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> x = A ) ) |
| 14 |
10 11 12 13
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> x = A ) ) |
| 15 |
|
breq1 |
|- ( x = A -> ( x Btwn <. C , B >. <-> A Btwn <. C , B >. ) ) |
| 16 |
15
|
biimpd |
|- ( x = A -> ( x Btwn <. C , B >. -> A Btwn <. C , B >. ) ) |
| 17 |
14 16
|
syl6 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> ( x Btwn <. C , B >. -> A Btwn <. C , B >. ) ) ) |
| 18 |
17
|
impd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) -> A Btwn <. C , B >. ) ) |
| 19 |
18
|
rexlimdva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) -> A Btwn <. C , B >. ) ) |
| 20 |
9 19
|
syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> A Btwn <. C , B >. ) ) |