| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwntriv2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> C Btwn <. A , C >. ) | 
						
							| 2 | 1 | 3adant3r2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C Btwn <. A , C >. ) | 
						
							| 3 |  | simpl |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 4 |  | simpr2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 5 |  | simpr1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 6 |  | simpr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 7 |  | axpasch |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ C Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) ) ) | 
						
							| 8 | 3 4 5 6 5 6 7 | syl132anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ C Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) ) ) | 
						
							| 9 | 2 8 | mpan2d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) ) ) | 
						
							| 10 |  | simpll |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 11 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 12 |  | simplr1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 13 |  | axbtwnid |  |-  ( ( N e. NN /\ x e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> x = A ) ) | 
						
							| 14 | 10 11 12 13 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> x = A ) ) | 
						
							| 15 |  | breq1 |  |-  ( x = A -> ( x Btwn <. C , B >. <-> A Btwn <. C , B >. ) ) | 
						
							| 16 | 15 | biimpd |  |-  ( x = A -> ( x Btwn <. C , B >. -> A Btwn <. C , B >. ) ) | 
						
							| 17 | 14 16 | syl6 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> ( x Btwn <. C , B >. -> A Btwn <. C , B >. ) ) ) | 
						
							| 18 | 17 | impd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) -> A Btwn <. C , B >. ) ) | 
						
							| 19 | 18 | rexlimdva |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. C , B >. ) -> A Btwn <. C , B >. ) ) | 
						
							| 20 | 9 19 | syld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. -> A Btwn <. C , B >. ) ) |