Step |
Hyp |
Ref |
Expression |
1 |
|
axpaschlem |
|- ( ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) |
2 |
1
|
3ad2ant3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) |
3 |
|
simp1 |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> q = ( ( 1 - r ) x. ( 1 - t ) ) ) |
4 |
3
|
oveq1d |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> ( q x. ( A ` i ) ) = ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) ) |
5 |
4
|
eqcomd |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) = ( q x. ( A ` i ) ) ) |
6 |
|
simp2 |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> r = ( ( 1 - q ) x. ( 1 - s ) ) ) |
7 |
6
|
oveq1d |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> ( r x. ( B ` i ) ) = ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) |
8 |
5 7
|
oveq12d |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( r x. ( B ` i ) ) ) = ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) ) |
9 |
|
simp3 |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) |
10 |
9
|
oveq1d |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) = ( ( ( 1 - q ) x. s ) x. ( C ` i ) ) ) |
11 |
8 10
|
oveq12d |
|- ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> ( ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( r x. ( B ` i ) ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) = ( ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) + ( ( ( 1 - q ) x. s ) x. ( C ` i ) ) ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) -> ( ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( r x. ( B ` i ) ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) = ( ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) + ( ( ( 1 - q ) x. s ) x. ( C ` i ) ) ) ) |
13 |
12
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( r x. ( B ` i ) ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) = ( ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) + ( ( ( 1 - q ) x. s ) x. ( C ` i ) ) ) ) |
14 |
|
1re |
|- 1 e. RR |
15 |
|
simpl2l |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> r e. ( 0 [,] 1 ) ) |
16 |
|
elicc01 |
|- ( r e. ( 0 [,] 1 ) <-> ( r e. RR /\ 0 <_ r /\ r <_ 1 ) ) |
17 |
16
|
simp1bi |
|- ( r e. ( 0 [,] 1 ) -> r e. RR ) |
18 |
15 17
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> r e. RR ) |
19 |
|
resubcl |
|- ( ( 1 e. RR /\ r e. RR ) -> ( 1 - r ) e. RR ) |
20 |
14 18 19
|
sylancr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - r ) e. RR ) |
21 |
20
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - r ) e. CC ) |
22 |
|
simp13l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) -> t e. ( 0 [,] 1 ) ) |
23 |
22
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> t e. ( 0 [,] 1 ) ) |
24 |
|
elicc01 |
|- ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
25 |
24
|
simp1bi |
|- ( t e. ( 0 [,] 1 ) -> t e. RR ) |
26 |
23 25
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> t e. RR ) |
27 |
|
resubcl |
|- ( ( 1 e. RR /\ t e. RR ) -> ( 1 - t ) e. RR ) |
28 |
14 26 27
|
sylancr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - t ) e. RR ) |
29 |
|
simp121 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) -> A e. ( EE ` N ) ) |
30 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
31 |
29 30
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
32 |
28 31
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - t ) x. ( A ` i ) ) e. RR ) |
33 |
32
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - t ) x. ( A ` i ) ) e. CC ) |
34 |
|
simp123 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) -> C e. ( EE ` N ) ) |
35 |
|
fveere |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. RR ) |
36 |
34 35
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. RR ) |
37 |
26 36
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( t x. ( C ` i ) ) e. RR ) |
38 |
37
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( t x. ( C ` i ) ) e. CC ) |
39 |
21 33 38
|
adddid |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) = ( ( ( 1 - r ) x. ( ( 1 - t ) x. ( A ` i ) ) ) + ( ( 1 - r ) x. ( t x. ( C ` i ) ) ) ) ) |
40 |
28
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - t ) e. CC ) |
41 |
31
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
42 |
21 40 41
|
mulassd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) = ( ( 1 - r ) x. ( ( 1 - t ) x. ( A ` i ) ) ) ) |
43 |
26
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> t e. CC ) |
44 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
45 |
34 44
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
46 |
21 43 45
|
mulassd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) = ( ( 1 - r ) x. ( t x. ( C ` i ) ) ) ) |
47 |
42 46
|
oveq12d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) = ( ( ( 1 - r ) x. ( ( 1 - t ) x. ( A ` i ) ) ) + ( ( 1 - r ) x. ( t x. ( C ` i ) ) ) ) ) |
48 |
39 47
|
eqtr4d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) = ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) ) |
49 |
48
|
oveq1d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) + ( r x. ( B ` i ) ) ) ) |
50 |
20 28
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - r ) x. ( 1 - t ) ) e. RR ) |
51 |
50 31
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) e. RR ) |
52 |
51
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) e. CC ) |
53 |
20 26
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - r ) x. t ) e. RR ) |
54 |
53 36
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) e. RR ) |
55 |
54
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) e. CC ) |
56 |
|
simp122 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) -> B e. ( EE ` N ) ) |
57 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
58 |
56 57
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
59 |
18 58
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( r x. ( B ` i ) ) e. RR ) |
60 |
59
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( r x. ( B ` i ) ) e. CC ) |
61 |
52 55 60
|
add32d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( r x. ( B ` i ) ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) ) |
62 |
49 61
|
eqtrd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( ( ( 1 - r ) x. ( 1 - t ) ) x. ( A ` i ) ) + ( r x. ( B ` i ) ) ) + ( ( ( 1 - r ) x. t ) x. ( C ` i ) ) ) ) |
63 |
|
simpl2r |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> q e. ( 0 [,] 1 ) ) |
64 |
|
elicc01 |
|- ( q e. ( 0 [,] 1 ) <-> ( q e. RR /\ 0 <_ q /\ q <_ 1 ) ) |
65 |
64
|
simp1bi |
|- ( q e. ( 0 [,] 1 ) -> q e. RR ) |
66 |
63 65
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> q e. RR ) |
67 |
|
resubcl |
|- ( ( 1 e. RR /\ q e. RR ) -> ( 1 - q ) e. RR ) |
68 |
14 66 67
|
sylancr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - q ) e. RR ) |
69 |
|
simp13r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) -> s e. ( 0 [,] 1 ) ) |
70 |
69
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> s e. ( 0 [,] 1 ) ) |
71 |
|
elicc01 |
|- ( s e. ( 0 [,] 1 ) <-> ( s e. RR /\ 0 <_ s /\ s <_ 1 ) ) |
72 |
71
|
simp1bi |
|- ( s e. ( 0 [,] 1 ) -> s e. RR ) |
73 |
70 72
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> s e. RR ) |
74 |
|
resubcl |
|- ( ( 1 e. RR /\ s e. RR ) -> ( 1 - s ) e. RR ) |
75 |
14 73 74
|
sylancr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - s ) e. RR ) |
76 |
75 58
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - s ) x. ( B ` i ) ) e. RR ) |
77 |
68 76
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) e. RR ) |
78 |
77
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) e. CC ) |
79 |
73 36
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( s x. ( C ` i ) ) e. RR ) |
80 |
68 79
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) e. RR ) |
81 |
80
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) e. CC ) |
82 |
66 31
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( q x. ( A ` i ) ) e. RR ) |
83 |
82
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( q x. ( A ` i ) ) e. CC ) |
84 |
78 81 83
|
add32d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) + ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) = ( ( ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) + ( q x. ( A ` i ) ) ) + ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) ) ) |
85 |
68
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - q ) e. CC ) |
86 |
76
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - s ) x. ( B ` i ) ) e. CC ) |
87 |
79
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( s x. ( C ` i ) ) e. CC ) |
88 |
85 86 87
|
adddid |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) = ( ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) + ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) ) ) |
89 |
88
|
oveq1d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) = ( ( ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) + ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) |
90 |
75
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( 1 - s ) e. CC ) |
91 |
58
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
92 |
85 90 91
|
mulassd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) = ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) ) |
93 |
92
|
oveq2d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) = ( ( q x. ( A ` i ) ) + ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) ) ) |
94 |
83 78 93
|
comraddd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) + ( q x. ( A ` i ) ) ) ) |
95 |
73
|
recnd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> s e. CC ) |
96 |
85 95 45
|
mulassd |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - q ) x. s ) x. ( C ` i ) ) = ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) ) |
97 |
94 96
|
oveq12d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) + ( ( ( 1 - q ) x. s ) x. ( C ` i ) ) ) = ( ( ( ( 1 - q ) x. ( ( 1 - s ) x. ( B ` i ) ) ) + ( q x. ( A ` i ) ) ) + ( ( 1 - q ) x. ( s x. ( C ` i ) ) ) ) ) |
98 |
84 89 97
|
3eqtr4d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) = ( ( ( q x. ( A ` i ) ) + ( ( ( 1 - q ) x. ( 1 - s ) ) x. ( B ` i ) ) ) + ( ( ( 1 - q ) x. s ) x. ( C ` i ) ) ) ) |
99 |
13 62 98
|
3eqtr4d |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) |
100 |
99
|
ralrimiva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) /\ ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) |
101 |
100
|
3expia |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) -> ( ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
102 |
101
|
reximdvva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( q = ( ( 1 - r ) x. ( 1 - t ) ) /\ r = ( ( 1 - q ) x. ( 1 - s ) ) /\ ( ( 1 - r ) x. t ) = ( ( 1 - q ) x. s ) ) -> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
103 |
2 102
|
mpd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) |
104 |
|
simplrl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> r e. ( 0 [,] 1 ) ) |
105 |
104 17
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> r e. RR ) |
106 |
14 105 19
|
sylancr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( 1 - r ) e. RR ) |
107 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) -> t e. ( 0 [,] 1 ) ) |
108 |
107
|
adantr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> t e. ( 0 [,] 1 ) ) |
109 |
108 25
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> t e. RR ) |
110 |
14 109 27
|
sylancr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( 1 - t ) e. RR ) |
111 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) -> A e. ( EE ` N ) ) |
112 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. RR ) |
113 |
111 112
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( A ` k ) e. RR ) |
114 |
110 113
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( ( 1 - t ) x. ( A ` k ) ) e. RR ) |
115 |
|
simpl23 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) -> C e. ( EE ` N ) ) |
116 |
|
fveere |
|- ( ( C e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( C ` k ) e. RR ) |
117 |
115 116
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( C ` k ) e. RR ) |
118 |
109 117
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( t x. ( C ` k ) ) e. RR ) |
119 |
114 118
|
readdcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) e. RR ) |
120 |
106 119
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) e. RR ) |
121 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) -> B e. ( EE ` N ) ) |
122 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. RR ) |
123 |
121 122
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( B ` k ) e. RR ) |
124 |
105 123
|
remulcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( r x. ( B ` k ) ) e. RR ) |
125 |
120 124
|
readdcld |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) /\ k e. ( 1 ... N ) ) -> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) e. RR ) |
126 |
125
|
ralrimiva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ ( r e. ( 0 [,] 1 ) /\ q e. ( 0 [,] 1 ) ) ) -> A. k e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) e. RR ) |
127 |
126
|
anassrs |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ r e. ( 0 [,] 1 ) ) /\ q e. ( 0 [,] 1 ) ) -> A. k e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) e. RR ) |
128 |
|
simpll1 |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ r e. ( 0 [,] 1 ) ) /\ q e. ( 0 [,] 1 ) ) -> N e. NN ) |
129 |
|
mptelee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) e. RR ) ) |
130 |
128 129
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ r e. ( 0 [,] 1 ) ) /\ q e. ( 0 [,] 1 ) ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) e. RR ) ) |
131 |
127 130
|
mpbird |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ r e. ( 0 [,] 1 ) ) /\ q e. ( 0 [,] 1 ) ) -> ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) e. ( EE ` N ) ) |
132 |
|
fveq1 |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) -> ( x ` i ) = ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) ` i ) ) |
133 |
|
fveq2 |
|- ( k = i -> ( A ` k ) = ( A ` i ) ) |
134 |
133
|
oveq2d |
|- ( k = i -> ( ( 1 - t ) x. ( A ` k ) ) = ( ( 1 - t ) x. ( A ` i ) ) ) |
135 |
|
fveq2 |
|- ( k = i -> ( C ` k ) = ( C ` i ) ) |
136 |
135
|
oveq2d |
|- ( k = i -> ( t x. ( C ` k ) ) = ( t x. ( C ` i ) ) ) |
137 |
134 136
|
oveq12d |
|- ( k = i -> ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) |
138 |
137
|
oveq2d |
|- ( k = i -> ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) = ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) ) |
139 |
|
fveq2 |
|- ( k = i -> ( B ` k ) = ( B ` i ) ) |
140 |
139
|
oveq2d |
|- ( k = i -> ( r x. ( B ` k ) ) = ( r x. ( B ` i ) ) ) |
141 |
138 140
|
oveq12d |
|- ( k = i -> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) ) |
142 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) |
143 |
|
ovex |
|- ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) e. _V |
144 |
141 142 143
|
fvmpt |
|- ( i e. ( 1 ... N ) -> ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) ) |
145 |
132 144
|
sylan9eq |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) ) |
146 |
145
|
eqeq1d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) <-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) ) ) |
147 |
145
|
eqeq1d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) <-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
148 |
146 147
|
anbi12d |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) <-> ( ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
149 |
|
eqid |
|- ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) |
150 |
149
|
biantrur |
|- ( ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) <-> ( ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
151 |
148 150
|
bitr4di |
|- ( ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) <-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
152 |
151
|
ralbidva |
|- ( x = ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) -> ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
153 |
152
|
rspcev |
|- ( ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) e. ( EE ` N ) /\ A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) -> E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
154 |
153
|
ex |
|- ( ( k e. ( 1 ... N ) |-> ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` k ) ) + ( t x. ( C ` k ) ) ) ) + ( r x. ( B ` k ) ) ) ) e. ( EE ` N ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) -> E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
155 |
131 154
|
syl |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ r e. ( 0 [,] 1 ) ) /\ q e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) -> E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
156 |
155
|
reximdva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) /\ r e. ( 0 [,] 1 ) ) -> ( E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) -> E. q e. ( 0 [,] 1 ) E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
157 |
156
|
reximdva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) -> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
158 |
103 157
|
mpd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
159 |
|
rexcom |
|- ( E. q e. ( 0 [,] 1 ) E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
160 |
159
|
rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
161 |
|
rexcom |
|- ( E. r e. ( 0 [,] 1 ) E. x e. ( EE ` N ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
162 |
160 161
|
bitri |
|- ( E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) E. x e. ( EE ` N ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
163 |
158 162
|
sylib |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
164 |
|
oveq2 |
|- ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) -> ( ( 1 - r ) x. ( D ` i ) ) = ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) ) |
165 |
164
|
oveq1d |
|- ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) -> ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) ) |
166 |
165
|
eqeq2d |
|- ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) -> ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) ) ) |
167 |
|
oveq2 |
|- ( ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) -> ( ( 1 - q ) x. ( E ` i ) ) = ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) |
168 |
167
|
oveq1d |
|- ( ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) -> ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) |
169 |
168
|
eqeq2d |
|- ( ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) -> ( ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) <-> ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) |
170 |
166 169
|
bi2anan9 |
|- ( ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> ( ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
171 |
170
|
ralimi |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> A. i e. ( 1 ... N ) ( ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
172 |
|
ralbi |
|- ( A. i e. ( 1 ... N ) ( ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) -> ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
173 |
171 172
|
syl |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
174 |
173
|
rexbidv |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> ( E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
175 |
174
|
2rexbidv |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> ( E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
176 |
163 175
|
syl5ibrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) ) -> ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
177 |
176
|
3expia |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( t e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) ) ) |
178 |
177
|
rexlimdvv |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
179 |
178
|
3adant3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) -> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
180 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
181 |
|
simp21 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
182 |
|
simp23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
183 |
|
brbtwn |
|- ( ( D e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( D Btwn <. A , C >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) ) |
184 |
180 181 182 183
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( D Btwn <. A , C >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) ) ) |
185 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> E e. ( EE ` N ) ) |
186 |
|
simp22 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
187 |
|
brbtwn |
|- ( ( E e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( E Btwn <. B , C >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) |
188 |
185 186 182 187
|
syl3anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( E Btwn <. B , C >. <-> E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) |
189 |
184 188
|
anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , C >. /\ E Btwn <. B , C >. ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) ) |
190 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) |
191 |
190
|
2rexbii |
|- ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) <-> E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) |
192 |
|
reeanv |
|- ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) |
193 |
191 192
|
bitri |
|- ( E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) <-> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) |
194 |
189 193
|
bitr4di |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , C >. /\ E Btwn <. B , C >. ) <-> E. t e. ( 0 [,] 1 ) E. s e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( D ` i ) = ( ( ( 1 - t ) x. ( A ` i ) ) + ( t x. ( C ` i ) ) ) /\ ( E ` i ) = ( ( ( 1 - s ) x. ( B ` i ) ) + ( s x. ( C ` i ) ) ) ) ) ) |
195 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
196 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> D e. ( EE ` N ) ) |
197 |
|
simpl22 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
198 |
|
brbtwn |
|- ( ( x e. ( EE ` N ) /\ D e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( x Btwn <. D , B >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) ) ) |
199 |
195 196 197 198
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. D , B >. <-> E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) ) ) |
200 |
|
simpl3r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> E e. ( EE ` N ) ) |
201 |
|
simpl21 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
202 |
|
brbtwn |
|- ( ( x e. ( EE ` N ) /\ E e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( x Btwn <. E , A >. <-> E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) |
203 |
195 200 201 202
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. E , A >. <-> E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) |
204 |
199 203
|
anbi12d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. D , B >. /\ x Btwn <. E , A >. ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
205 |
|
r19.26 |
|- ( A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) |
206 |
205
|
2rexbii |
|- ( E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) |
207 |
|
reeanv |
|- ( E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) ( A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) |
208 |
206 207
|
bitri |
|- ( E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) <-> ( E. r e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) |
209 |
204 208
|
bitr4di |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. D , B >. /\ x Btwn <. E , A >. ) <-> E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
210 |
209
|
rexbidva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) ( x Btwn <. D , B >. /\ x Btwn <. E , A >. ) <-> E. x e. ( EE ` N ) E. r e. ( 0 [,] 1 ) E. q e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( ( x ` i ) = ( ( ( 1 - r ) x. ( D ` i ) ) + ( r x. ( B ` i ) ) ) /\ ( x ` i ) = ( ( ( 1 - q ) x. ( E ` i ) ) + ( q x. ( A ` i ) ) ) ) ) ) |
211 |
179 194 210
|
3imtr4d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) ) ) -> ( ( D Btwn <. A , C >. /\ E Btwn <. B , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. D , B >. /\ x Btwn <. E , A >. ) ) ) |