Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
2 |
|
simp3 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
3 |
|
brbtwn |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A Btwn <. B , B >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) ) ) |
4 |
1 2 2 3
|
syl3anc |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A Btwn <. B , B >. <-> E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) ) ) |
5 |
|
elicc01 |
|- ( t e. ( 0 [,] 1 ) <-> ( t e. RR /\ 0 <_ t /\ t <_ 1 ) ) |
6 |
5
|
simp1bi |
|- ( t e. ( 0 [,] 1 ) -> t e. RR ) |
7 |
6
|
recnd |
|- ( t e. ( 0 [,] 1 ) -> t e. CC ) |
8 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
9 |
8
|
3adant1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
10 |
9
|
adantr |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
11 |
|
ax-1cn |
|- 1 e. CC |
12 |
|
npcan |
|- ( ( 1 e. CC /\ t e. CC ) -> ( ( 1 - t ) + t ) = 1 ) |
13 |
11 12
|
mpan |
|- ( t e. CC -> ( ( 1 - t ) + t ) = 1 ) |
14 |
13
|
ad2antlr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( ( 1 - t ) + t ) = 1 ) |
15 |
14
|
oveq1d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - t ) + t ) x. ( B ` i ) ) = ( 1 x. ( B ` i ) ) ) |
16 |
|
subcl |
|- ( ( 1 e. CC /\ t e. CC ) -> ( 1 - t ) e. CC ) |
17 |
11 16
|
mpan |
|- ( t e. CC -> ( 1 - t ) e. CC ) |
18 |
17
|
ad2antlr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( 1 - t ) e. CC ) |
19 |
|
simplr |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> t e. CC ) |
20 |
|
simpll3 |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> B e. ( EE ` N ) ) |
21 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
22 |
20 21
|
sylancom |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
23 |
18 19 22
|
adddird |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( ( ( 1 - t ) + t ) x. ( B ` i ) ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) ) |
24 |
22
|
mulid2d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( 1 x. ( B ` i ) ) = ( B ` i ) ) |
25 |
15 23 24
|
3eqtr3rd |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) ) |
26 |
25
|
eqeq2d |
|- ( ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) = ( B ` i ) <-> ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) ) ) |
27 |
26
|
ralbidva |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) -> ( A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) <-> A. i e. ( 1 ... N ) ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) ) ) |
28 |
10 27
|
bitrd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) ) ) |
29 |
28
|
biimprd |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. CC ) -> ( A. i e. ( 1 ... N ) ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) -> A = B ) ) |
30 |
7 29
|
sylan2 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ t e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) -> A = B ) ) |
31 |
30
|
rexlimdva |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... N ) ( A ` i ) = ( ( ( 1 - t ) x. ( B ` i ) ) + ( t x. ( B ` i ) ) ) -> A = B ) ) |
32 |
4 31
|
sylbid |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A Btwn <. B , B >. -> A = B ) ) |