| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|
| 2 |
|
simp3 |
|
| 3 |
|
brbtwn |
|
| 4 |
1 2 2 3
|
syl3anc |
|
| 5 |
|
elicc01 |
|
| 6 |
5
|
simp1bi |
|
| 7 |
6
|
recnd |
|
| 8 |
|
eqeefv |
|
| 9 |
8
|
3adant1 |
|
| 10 |
9
|
adantr |
|
| 11 |
|
ax-1cn |
|
| 12 |
|
npcan |
|
| 13 |
11 12
|
mpan |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
subcl |
|
| 17 |
11 16
|
mpan |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
|
simplr |
|
| 20 |
|
simpll3 |
|
| 21 |
|
fveecn |
|
| 22 |
20 21
|
sylancom |
|
| 23 |
18 19 22
|
adddird |
|
| 24 |
22
|
mullidd |
|
| 25 |
15 23 24
|
3eqtr3rd |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
26
|
ralbidva |
|
| 28 |
10 27
|
bitrd |
|
| 29 |
28
|
biimprd |
|
| 30 |
7 29
|
sylan2 |
|
| 31 |
30
|
rexlimdva |
|
| 32 |
4 31
|
sylbid |
|