Description: Points are indivisible. That is, if A lies between B and B , then A = B . Axiom A6 of Schwabhauser p. 11. (Contributed by Scott Fenton, 3-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | axbtwnid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 | |
|
2 | simp3 | |
|
3 | brbtwn | |
|
4 | 1 2 2 3 | syl3anc | |
5 | elicc01 | |
|
6 | 5 | simp1bi | |
7 | 6 | recnd | |
8 | eqeefv | |
|
9 | 8 | 3adant1 | |
10 | 9 | adantr | |
11 | ax-1cn | |
|
12 | npcan | |
|
13 | 11 12 | mpan | |
14 | 13 | ad2antlr | |
15 | 14 | oveq1d | |
16 | subcl | |
|
17 | 11 16 | mpan | |
18 | 17 | ad2antlr | |
19 | simplr | |
|
20 | simpll3 | |
|
21 | fveecn | |
|
22 | 20 21 | sylancom | |
23 | 18 19 22 | adddird | |
24 | 22 | mullidd | |
25 | 15 23 24 | 3eqtr3rd | |
26 | 25 | eqeq2d | |
27 | 26 | ralbidva | |
28 | 10 27 | bitrd | |
29 | 28 | biimprd | |
30 | 7 29 | sylan2 | |
31 | 30 | rexlimdva | |
32 | 4 31 | sylbid | |