Metamath Proof Explorer


Theorem axbtwnid

Description: Points are indivisible. That is, if A lies between B and B , then A = B . Axiom A6 of Schwabhauser p. 11. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axbtwnid NA𝔼NB𝔼NABtwnBBA=B

Proof

Step Hyp Ref Expression
1 simp2 NA𝔼NB𝔼NA𝔼N
2 simp3 NA𝔼NB𝔼NB𝔼N
3 brbtwn A𝔼NB𝔼NB𝔼NABtwnBBt01i1NAi=1tBi+tBi
4 1 2 2 3 syl3anc NA𝔼NB𝔼NABtwnBBt01i1NAi=1tBi+tBi
5 elicc01 t01t0tt1
6 5 simp1bi t01t
7 6 recnd t01t
8 eqeefv A𝔼NB𝔼NA=Bi1NAi=Bi
9 8 3adant1 NA𝔼NB𝔼NA=Bi1NAi=Bi
10 9 adantr NA𝔼NB𝔼NtA=Bi1NAi=Bi
11 ax-1cn 1
12 npcan 1t1-t+t=1
13 11 12 mpan t1-t+t=1
14 13 ad2antlr NA𝔼NB𝔼Nti1N1-t+t=1
15 14 oveq1d NA𝔼NB𝔼Nti1N1-t+tBi=1Bi
16 subcl 1t1t
17 11 16 mpan t1t
18 17 ad2antlr NA𝔼NB𝔼Nti1N1t
19 simplr NA𝔼NB𝔼Nti1Nt
20 simpll3 NA𝔼NB𝔼Nti1NB𝔼N
21 fveecn B𝔼Ni1NBi
22 20 21 sylancom NA𝔼NB𝔼Nti1NBi
23 18 19 22 adddird NA𝔼NB𝔼Nti1N1-t+tBi=1tBi+tBi
24 22 mullidd NA𝔼NB𝔼Nti1N1Bi=Bi
25 15 23 24 3eqtr3rd NA𝔼NB𝔼Nti1NBi=1tBi+tBi
26 25 eqeq2d NA𝔼NB𝔼Nti1NAi=BiAi=1tBi+tBi
27 26 ralbidva NA𝔼NB𝔼Nti1NAi=Bii1NAi=1tBi+tBi
28 10 27 bitrd NA𝔼NB𝔼NtA=Bi1NAi=1tBi+tBi
29 28 biimprd NA𝔼NB𝔼Nti1NAi=1tBi+tBiA=B
30 7 29 sylan2 NA𝔼NB𝔼Nt01i1NAi=1tBi+tBiA=B
31 30 rexlimdva NA𝔼NB𝔼Nt01i1NAi=1tBi+tBiA=B
32 4 31 sylbid NA𝔼NB𝔼NABtwnBBA=B