Metamath Proof Explorer


Theorem axpaschlem

Description: Lemma for axpasch . Set up coefficents used in the proof. (Contributed by Scott Fenton, 5-Jun-2013)

Ref Expression
Assertion axpaschlem T 0 1 S 0 1 r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S

Proof

Step Hyp Ref Expression
1 1re 1
2 elicc01 T 0 1 T 0 T T 1
3 2 simp1bi T 0 1 T
4 3 ad2antrl S = 0 T 0 1 S 0 1 T
5 resubcl 1 T 1 T
6 1 4 5 sylancr S = 0 T 0 1 S 0 1 1 T
7 6 recnd S = 0 T 0 1 S 0 1 1 T
8 7 mul02d S = 0 T 0 1 S 0 1 0 1 T = 0
9 8 eqcomd S = 0 T 0 1 S 0 1 0 = 0 1 T
10 elicc01 S 0 1 S 0 S S 1
11 10 simp1bi S 0 1 S
12 11 ad2antll S = 0 T 0 1 S 0 1 S
13 resubcl 1 S 1 S
14 1 12 13 sylancr S = 0 T 0 1 S 0 1 1 S
15 14 recnd S = 0 T 0 1 S 0 1 1 S
16 15 mulid2d S = 0 T 0 1 S 0 1 1 1 S = 1 S
17 oveq2 S = 0 1 S = 1 0
18 17 adantr S = 0 T 0 1 S 0 1 1 S = 1 0
19 1m0e1 1 0 = 1
20 18 19 eqtrdi S = 0 T 0 1 S 0 1 1 S = 1
21 16 20 eqtr2d S = 0 T 0 1 S 0 1 1 = 1 1 S
22 4 recnd S = 0 T 0 1 S 0 1 T
23 22 mul02d S = 0 T 0 1 S 0 1 0 T = 0
24 oveq2 S = 0 1 S = 1 0
25 24 adantr S = 0 T 0 1 S 0 1 1 S = 1 0
26 ax-1cn 1
27 26 mul01i 1 0 = 0
28 25 27 eqtrdi S = 0 T 0 1 S 0 1 1 S = 0
29 23 28 eqtr4d S = 0 T 0 1 S 0 1 0 T = 1 S
30 1elunit 1 0 1
31 0elunit 0 0 1
32 oveq2 r = 1 1 r = 1 1
33 1m1e0 1 1 = 0
34 32 33 eqtrdi r = 1 1 r = 0
35 34 oveq1d r = 1 1 r 1 T = 0 1 T
36 35 eqeq2d r = 1 p = 1 r 1 T p = 0 1 T
37 eqeq1 r = 1 r = 1 p 1 S 1 = 1 p 1 S
38 34 oveq1d r = 1 1 r T = 0 T
39 38 eqeq1d r = 1 1 r T = 1 p S 0 T = 1 p S
40 36 37 39 3anbi123d r = 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S p = 0 1 T 1 = 1 p 1 S 0 T = 1 p S
41 eqeq1 p = 0 p = 0 1 T 0 = 0 1 T
42 oveq2 p = 0 1 p = 1 0
43 42 19 eqtrdi p = 0 1 p = 1
44 43 oveq1d p = 0 1 p 1 S = 1 1 S
45 44 eqeq2d p = 0 1 = 1 p 1 S 1 = 1 1 S
46 43 oveq1d p = 0 1 p S = 1 S
47 46 eqeq2d p = 0 0 T = 1 p S 0 T = 1 S
48 41 45 47 3anbi123d p = 0 p = 0 1 T 1 = 1 p 1 S 0 T = 1 p S 0 = 0 1 T 1 = 1 1 S 0 T = 1 S
49 40 48 rspc2ev 1 0 1 0 0 1 0 = 0 1 T 1 = 1 1 S 0 T = 1 S r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S
50 30 31 49 mp3an12 0 = 0 1 T 1 = 1 1 S 0 T = 1 S r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S
51 9 21 29 50 syl3anc S = 0 T 0 1 S 0 1 r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S
52 51 ex S = 0 T 0 1 S 0 1 r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S
53 3 ad2antrl S 0 T 0 1 S 0 1 T
54 11 ad2antll S 0 T 0 1 S 0 1 S
55 54 53 remulcld S 0 T 0 1 S 0 1 S T
56 53 55 resubcld S 0 T 0 1 S 0 1 T S T
57 54 53 readdcld S 0 T 0 1 S 0 1 S + T
58 57 55 resubcld S 0 T 0 1 S 0 1 S + T - S T
59 1red S 0 T 0 1 S 0 1 1
60 2 simp2bi T 0 1 0 T
61 60 ad2antrl S 0 T 0 1 S 0 1 0 T
62 10 simp3bi S 0 1 S 1
63 62 ad2antll S 0 T 0 1 S 0 1 S 1
64 54 59 53 61 63 lemul1ad S 0 T 0 1 S 0 1 S T 1 T
65 53 recnd S 0 T 0 1 S 0 1 T
66 65 mulid2d S 0 T 0 1 S 0 1 1 T = T
67 64 66 breqtrd S 0 T 0 1 S 0 1 S T T
68 10 simp2bi S 0 1 0 S
69 68 ad2antll S 0 T 0 1 S 0 1 0 S
70 simpl S 0 T 0 1 S 0 1 S 0
71 54 69 70 ne0gt0d S 0 T 0 1 S 0 1 0 < S
72 54 53 ltaddpos2d S 0 T 0 1 S 0 1 0 < S T < S + T
73 71 72 mpbid S 0 T 0 1 S 0 1 T < S + T
74 55 53 57 67 73 lelttrd S 0 T 0 1 S 0 1 S T < S + T
75 55 57 posdifd S 0 T 0 1 S 0 1 S T < S + T 0 < S + T - S T
76 74 75 mpbid S 0 T 0 1 S 0 1 0 < S + T - S T
77 76 gt0ne0d S 0 T 0 1 S 0 1 S + T - S T 0
78 56 58 77 redivcld S 0 T 0 1 S 0 1 T S T S + T - S T
79 53 55 subge0d S 0 T 0 1 S 0 1 0 T S T S T T
80 67 79 mpbird S 0 T 0 1 S 0 1 0 T S T
81 divge0 T S T 0 T S T S + T - S T 0 < S + T - S T 0 T S T S + T - S T
82 56 80 58 76 81 syl22anc S 0 T 0 1 S 0 1 0 T S T S + T - S T
83 53 57 73 ltled S 0 T 0 1 S 0 1 T S + T
84 53 57 55 83 lesub1dd S 0 T 0 1 S 0 1 T S T S + T - S T
85 58 recnd S 0 T 0 1 S 0 1 S + T - S T
86 85 mulid2d S 0 T 0 1 S 0 1 1 S + T - S T = S + T - S T
87 84 86 breqtrrd S 0 T 0 1 S 0 1 T S T 1 S + T - S T
88 ledivmul2 T S T 1 S + T - S T 0 < S + T - S T T S T S + T - S T 1 T S T 1 S + T - S T
89 56 59 58 76 88 syl112anc S 0 T 0 1 S 0 1 T S T S + T - S T 1 T S T 1 S + T - S T
90 87 89 mpbird S 0 T 0 1 S 0 1 T S T S + T - S T 1
91 elicc01 T S T S + T - S T 0 1 T S T S + T - S T 0 T S T S + T - S T T S T S + T - S T 1
92 78 82 90 91 syl3anbrc S 0 T 0 1 S 0 1 T S T S + T - S T 0 1
93 54 55 resubcld S 0 T 0 1 S 0 1 S S T
94 93 58 77 redivcld S 0 T 0 1 S 0 1 S S T S + T - S T
95 2 simp3bi T 0 1 T 1
96 95 ad2antrl S 0 T 0 1 S 0 1 T 1
97 53 59 54 69 96 lemul2ad S 0 T 0 1 S 0 1 S T S 1
98 54 recnd S 0 T 0 1 S 0 1 S
99 98 mulid1d S 0 T 0 1 S 0 1 S 1 = S
100 97 99 breqtrd S 0 T 0 1 S 0 1 S T S
101 54 55 subge0d S 0 T 0 1 S 0 1 0 S S T S T S
102 100 101 mpbird S 0 T 0 1 S 0 1 0 S S T
103 divge0 S S T 0 S S T S + T - S T 0 < S + T - S T 0 S S T S + T - S T
104 93 102 58 76 103 syl22anc S 0 T 0 1 S 0 1 0 S S T S + T - S T
105 54 53 addge01d S 0 T 0 1 S 0 1 0 T S S + T
106 61 105 mpbid S 0 T 0 1 S 0 1 S S + T
107 54 57 55 106 lesub1dd S 0 T 0 1 S 0 1 S S T S + T - S T
108 107 86 breqtrrd S 0 T 0 1 S 0 1 S S T 1 S + T - S T
109 ledivmul2 S S T 1 S + T - S T 0 < S + T - S T S S T S + T - S T 1 S S T 1 S + T - S T
110 93 59 58 76 109 syl112anc S 0 T 0 1 S 0 1 S S T S + T - S T 1 S S T 1 S + T - S T
111 108 110 mpbird S 0 T 0 1 S 0 1 S S T S + T - S T 1
112 elicc01 S S T S + T - S T 0 1 S S T S + T - S T 0 S S T S + T - S T S S T S + T - S T 1
113 94 104 111 112 syl3anbrc S 0 T 0 1 S 0 1 S S T S + T - S T 0 1
114 1 53 5 sylancr S 0 T 0 1 S 0 1 1 T
115 114 recnd S 0 T 0 1 S 0 1 1 T
116 98 115 85 77 div23d S 0 T 0 1 S 0 1 S 1 T S + T - S T = S S + T - S T 1 T
117 subdi S 1 T S 1 T = S 1 S T
118 26 117 mp3an2 S T S 1 T = S 1 S T
119 98 65 118 syl2anc S 0 T 0 1 S 0 1 S 1 T = S 1 S T
120 99 oveq1d S 0 T 0 1 S 0 1 S 1 S T = S S T
121 119 120 eqtrd S 0 T 0 1 S 0 1 S 1 T = S S T
122 121 oveq1d S 0 T 0 1 S 0 1 S 1 T S + T - S T = S S T S + T - S T
123 56 recnd S 0 T 0 1 S 0 1 T S T
124 85 123 85 77 divsubdird S 0 T 0 1 S 0 1 S + T - S T - T S T S + T - S T = S + T - S T S + T - S T T S T S + T - S T
125 57 recnd S 0 T 0 1 S 0 1 S + T
126 55 recnd S 0 T 0 1 S 0 1 S T
127 125 65 126 nnncan2d S 0 T 0 1 S 0 1 S + T - S T - T S T = S + T - T
128 98 65 pncand S 0 T 0 1 S 0 1 S + T - T = S
129 127 128 eqtrd S 0 T 0 1 S 0 1 S + T - S T - T S T = S
130 129 oveq1d S 0 T 0 1 S 0 1 S + T - S T - T S T S + T - S T = S S + T - S T
131 85 77 dividd S 0 T 0 1 S 0 1 S + T - S T S + T - S T = 1
132 131 oveq1d S 0 T 0 1 S 0 1 S + T - S T S + T - S T T S T S + T - S T = 1 T S T S + T - S T
133 124 130 132 3eqtr3d S 0 T 0 1 S 0 1 S S + T - S T = 1 T S T S + T - S T
134 133 oveq1d S 0 T 0 1 S 0 1 S S + T - S T 1 T = 1 T S T S + T - S T 1 T
135 116 122 134 3eqtr3d S 0 T 0 1 S 0 1 S S T S + T - S T = 1 T S T S + T - S T 1 T
136 1 54 13 sylancr S 0 T 0 1 S 0 1 1 S
137 136 recnd S 0 T 0 1 S 0 1 1 S
138 65 137 85 77 div23d S 0 T 0 1 S 0 1 T 1 S S + T - S T = T S + T - S T 1 S
139 subdi T 1 S T 1 S = T 1 T S
140 26 139 mp3an2 T S T 1 S = T 1 T S
141 65 98 140 syl2anc S 0 T 0 1 S 0 1 T 1 S = T 1 T S
142 65 mulid1d S 0 T 0 1 S 0 1 T 1 = T
143 65 98 mulcomd S 0 T 0 1 S 0 1 T S = S T
144 142 143 oveq12d S 0 T 0 1 S 0 1 T 1 T S = T S T
145 141 144 eqtrd S 0 T 0 1 S 0 1 T 1 S = T S T
146 145 oveq1d S 0 T 0 1 S 0 1 T 1 S S + T - S T = T S T S + T - S T
147 93 recnd S 0 T 0 1 S 0 1 S S T
148 85 147 85 77 divsubdird S 0 T 0 1 S 0 1 S + T - S T - S S T S + T - S T = S + T - S T S + T - S T S S T S + T - S T
149 125 98 126 nnncan2d S 0 T 0 1 S 0 1 S + T - S T - S S T = S + T - S
150 98 65 pncan2d S 0 T 0 1 S 0 1 S + T - S = T
151 149 150 eqtrd S 0 T 0 1 S 0 1 S + T - S T - S S T = T
152 151 oveq1d S 0 T 0 1 S 0 1 S + T - S T - S S T S + T - S T = T S + T - S T
153 131 oveq1d S 0 T 0 1 S 0 1 S + T - S T S + T - S T S S T S + T - S T = 1 S S T S + T - S T
154 148 152 153 3eqtr3d S 0 T 0 1 S 0 1 T S + T - S T = 1 S S T S + T - S T
155 154 oveq1d S 0 T 0 1 S 0 1 T S + T - S T 1 S = 1 S S T S + T - S T 1 S
156 138 146 155 3eqtr3d S 0 T 0 1 S 0 1 T S T S + T - S T = 1 S S T S + T - S T 1 S
157 98 65 mulcomd S 0 T 0 1 S 0 1 S T = T S
158 157 oveq1d S 0 T 0 1 S 0 1 S T S + T - S T = T S S + T - S T
159 98 65 85 77 div23d S 0 T 0 1 S 0 1 S T S + T - S T = S S + T - S T T
160 133 oveq1d S 0 T 0 1 S 0 1 S S + T - S T T = 1 T S T S + T - S T T
161 159 160 eqtrd S 0 T 0 1 S 0 1 S T S + T - S T = 1 T S T S + T - S T T
162 65 98 85 77 div23d S 0 T 0 1 S 0 1 T S S + T - S T = T S + T - S T S
163 154 oveq1d S 0 T 0 1 S 0 1 T S + T - S T S = 1 S S T S + T - S T S
164 162 163 eqtrd S 0 T 0 1 S 0 1 T S S + T - S T = 1 S S T S + T - S T S
165 158 161 164 3eqtr3d S 0 T 0 1 S 0 1 1 T S T S + T - S T T = 1 S S T S + T - S T S
166 oveq2 r = T S T S + T - S T 1 r = 1 T S T S + T - S T
167 166 oveq1d r = T S T S + T - S T 1 r 1 T = 1 T S T S + T - S T 1 T
168 167 eqeq2d r = T S T S + T - S T p = 1 r 1 T p = 1 T S T S + T - S T 1 T
169 eqeq1 r = T S T S + T - S T r = 1 p 1 S T S T S + T - S T = 1 p 1 S
170 166 oveq1d r = T S T S + T - S T 1 r T = 1 T S T S + T - S T T
171 170 eqeq1d r = T S T S + T - S T 1 r T = 1 p S 1 T S T S + T - S T T = 1 p S
172 168 169 171 3anbi123d r = T S T S + T - S T p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S p = 1 T S T S + T - S T 1 T T S T S + T - S T = 1 p 1 S 1 T S T S + T - S T T = 1 p S
173 eqeq1 p = S S T S + T - S T p = 1 T S T S + T - S T 1 T S S T S + T - S T = 1 T S T S + T - S T 1 T
174 oveq2 p = S S T S + T - S T 1 p = 1 S S T S + T - S T
175 174 oveq1d p = S S T S + T - S T 1 p 1 S = 1 S S T S + T - S T 1 S
176 175 eqeq2d p = S S T S + T - S T T S T S + T - S T = 1 p 1 S T S T S + T - S T = 1 S S T S + T - S T 1 S
177 174 oveq1d p = S S T S + T - S T 1 p S = 1 S S T S + T - S T S
178 177 eqeq2d p = S S T S + T - S T 1 T S T S + T - S T T = 1 p S 1 T S T S + T - S T T = 1 S S T S + T - S T S
179 173 176 178 3anbi123d p = S S T S + T - S T p = 1 T S T S + T - S T 1 T T S T S + T - S T = 1 p 1 S 1 T S T S + T - S T T = 1 p S S S T S + T - S T = 1 T S T S + T - S T 1 T T S T S + T - S T = 1 S S T S + T - S T 1 S 1 T S T S + T - S T T = 1 S S T S + T - S T S
180 172 179 rspc2ev T S T S + T - S T 0 1 S S T S + T - S T 0 1 S S T S + T - S T = 1 T S T S + T - S T 1 T T S T S + T - S T = 1 S S T S + T - S T 1 S 1 T S T S + T - S T T = 1 S S T S + T - S T S r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S
181 92 113 135 156 165 180 syl113anc S 0 T 0 1 S 0 1 r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S
182 181 ex S 0 T 0 1 S 0 1 r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S
183 52 182 pm2.61ine T 0 1 S 0 1 r 0 1 p 0 1 p = 1 r 1 T r = 1 p 1 S 1 r T = 1 p S