Metamath Proof Explorer


Theorem btwntriv2

Description: Betweenness always holds for the second endpoint. Theorem 3.1 of Schwabhauser p. 30. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwntriv2 NA𝔼NB𝔼NBBtwnAB

Proof

Step Hyp Ref Expression
1 simp1 NA𝔼NB𝔼NN
2 simp2 NA𝔼NB𝔼NA𝔼N
3 simp3 NA𝔼NB𝔼NB𝔼N
4 axsegcon NA𝔼NB𝔼NB𝔼NB𝔼Nx𝔼NBBtwnAxBxCgrBB
5 1 2 3 3 3 4 syl122anc NA𝔼NB𝔼Nx𝔼NBBtwnAxBxCgrBB
6 simpl1 NA𝔼NB𝔼Nx𝔼NN
7 simpl3 NA𝔼NB𝔼Nx𝔼NB𝔼N
8 simpr NA𝔼NB𝔼Nx𝔼Nx𝔼N
9 axcgrid NB𝔼Nx𝔼NB𝔼NBxCgrBBB=x
10 6 7 8 7 9 syl13anc NA𝔼NB𝔼Nx𝔼NBxCgrBBB=x
11 opeq2 B=xAB=Ax
12 11 breq2d B=xBBtwnABBBtwnAx
13 12 biimprd B=xBBtwnAxBBtwnAB
14 10 13 syl6 NA𝔼NB𝔼Nx𝔼NBxCgrBBBBtwnAxBBtwnAB
15 14 impd NA𝔼NB𝔼Nx𝔼NBxCgrBBBBtwnAxBBtwnAB
16 15 ancomsd NA𝔼NB𝔼Nx𝔼NBBtwnAxBxCgrBBBBtwnAB
17 16 rexlimdva NA𝔼NB𝔼Nx𝔼NBBtwnAxBxCgrBBBBtwnAB
18 5 17 mpd NA𝔼NB𝔼NBBtwnAB