Metamath Proof Explorer


Theorem btwntriv1

Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwntriv1 NA𝔼NB𝔼NABtwnAB

Proof

Step Hyp Ref Expression
1 btwntriv2 NB𝔼NA𝔼NABtwnBA
2 1 3com23 NA𝔼NB𝔼NABtwnBA
3 simp1 NA𝔼NB𝔼NN
4 simp2 NA𝔼NB𝔼NA𝔼N
5 simp3 NA𝔼NB𝔼NB𝔼N
6 btwncom NA𝔼NA𝔼NB𝔼NABtwnABABtwnBA
7 3 4 4 5 6 syl13anc NA𝔼NB𝔼NABtwnABABtwnBA
8 2 7 mpbird NA𝔼NB𝔼NABtwnAB