Metamath Proof Explorer


Theorem btwntriv1

Description: Betweenness always holds for the first endpoint. Theorem 3.3 of Schwabhauser p. 30. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwntriv1 N A 𝔼 N B 𝔼 N A Btwn A B

Proof

Step Hyp Ref Expression
1 btwntriv2 N B 𝔼 N A 𝔼 N A Btwn B A
2 1 3com23 N A 𝔼 N B 𝔼 N A Btwn B A
3 simp1 N A 𝔼 N B 𝔼 N N
4 simp2 N A 𝔼 N B 𝔼 N A 𝔼 N
5 simp3 N A 𝔼 N B 𝔼 N B 𝔼 N
6 btwncom N A 𝔼 N A 𝔼 N B 𝔼 N A Btwn A B A Btwn B A
7 3 4 4 5 6 syl13anc N A 𝔼 N B 𝔼 N A Btwn A B A Btwn B A
8 2 7 mpbird N A 𝔼 N B 𝔼 N A Btwn A B