| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simpr2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 3 |  | simpr1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 4 |  | simpr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 5 |  | axpasch |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ B Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. B , B >. ) ) ) | 
						
							| 6 | 1 2 3 4 3 2 5 | syl132anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ B Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. B , B >. ) ) ) | 
						
							| 7 |  | simpll |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 8 |  | simpr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 9 |  | simplr1 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 10 |  | axbtwnid |  |-  ( ( N e. NN /\ x e. ( EE ` N ) /\ A e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> x = A ) ) | 
						
							| 11 | 7 8 9 10 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. A , A >. -> x = A ) ) | 
						
							| 12 |  | simplr2 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 13 |  | axbtwnid |  |-  ( ( N e. NN /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( x Btwn <. B , B >. -> x = B ) ) | 
						
							| 14 | 7 8 12 13 | syl3anc |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. B , B >. -> x = B ) ) | 
						
							| 15 | 11 14 | anim12d |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. A , A >. /\ x Btwn <. B , B >. ) -> ( x = A /\ x = B ) ) ) | 
						
							| 16 |  | eqtr2 |  |-  ( ( x = A /\ x = B ) -> A = B ) | 
						
							| 17 | 15 16 | syl6 |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. A , A >. /\ x Btwn <. B , B >. ) -> A = B ) ) | 
						
							| 18 | 17 | rexlimdva |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) ( x Btwn <. A , A >. /\ x Btwn <. B , B >. ) -> A = B ) ) | 
						
							| 19 | 6 18 | syld |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ B Btwn <. A , C >. ) -> A = B ) ) |