| Step | Hyp | Ref | Expression | 
						
							| 1 |  | btwncom |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Btwn <. B , C >. <-> A Btwn <. C , B >. ) ) | 
						
							| 2 |  | 3anrev |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) | 
						
							| 3 |  | btwncom |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( C Btwn <. B , A >. <-> C Btwn <. A , B >. ) ) | 
						
							| 4 | 2 3 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. B , A >. <-> C Btwn <. A , B >. ) ) | 
						
							| 5 | 1 4 | anbi12d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ C Btwn <. B , A >. ) <-> ( A Btwn <. C , B >. /\ C Btwn <. A , B >. ) ) ) | 
						
							| 6 |  | 3ancomb |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 7 |  | btwnswapid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( A Btwn <. C , B >. /\ C Btwn <. A , B >. ) -> A = C ) ) | 
						
							| 8 | 6 7 | sylan2b |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. C , B >. /\ C Btwn <. A , B >. ) -> A = C ) ) | 
						
							| 9 | 5 8 | sylbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( A Btwn <. B , C >. /\ C Btwn <. B , A >. ) -> A = C ) ) |