| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
| 2 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 3 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 4 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 5 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 6 |
|
axpasch |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ D e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> E. x e. ( EE ` N ) ( x Btwn <. B , B >. /\ x Btwn <. C , A >. ) ) ) |
| 7 |
1 2 3 4 3 5 6
|
syl132anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> E. x e. ( EE ` N ) ( x Btwn <. B , B >. /\ x Btwn <. C , A >. ) ) ) |
| 8 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
| 9 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
| 10 |
|
simpl2r |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
| 11 |
|
axbtwnid |
|- ( ( N e. NN /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( x Btwn <. B , B >. -> x = B ) ) |
| 12 |
8 9 10 11
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. B , B >. -> x = B ) ) |
| 13 |
|
breq1 |
|- ( x = B -> ( x Btwn <. C , A >. <-> B Btwn <. C , A >. ) ) |
| 14 |
13
|
biimpa |
|- ( ( x = B /\ x Btwn <. C , A >. ) -> B Btwn <. C , A >. ) |
| 15 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
| 16 |
|
simpl2l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
| 17 |
|
btwncom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. C , A >. <-> B Btwn <. A , C >. ) ) |
| 18 |
8 10 15 16 17
|
syl13anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( B Btwn <. C , A >. <-> B Btwn <. A , C >. ) ) |
| 19 |
14 18
|
imbitrid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x = B /\ x Btwn <. C , A >. ) -> B Btwn <. A , C >. ) ) |
| 20 |
12 19
|
syland |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. B , B >. /\ x Btwn <. C , A >. ) -> B Btwn <. A , C >. ) ) |
| 21 |
20
|
rexlimdva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) ( x Btwn <. B , B >. /\ x Btwn <. C , A >. ) -> B Btwn <. A , C >. ) ) |
| 22 |
7 21
|
syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> B Btwn <. A , C >. ) ) |