| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
| 2 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 3 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 4 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 5 |
|
btwncom |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) ) |
| 6 |
1 2 3 4 5
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) ) |
| 7 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 8 |
|
btwncom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
| 9 |
1 7 3 2 8
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
| 10 |
6 9
|
anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , D >. /\ B Btwn <. A , C >. ) <-> ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) ) ) |
| 11 |
|
axpasch |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> E. x e. ( EE ` N ) ( x Btwn <. C , C >. /\ x Btwn <. B , D >. ) ) ) |
| 12 |
1 4 2 3 2 7 11
|
syl132anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> E. x e. ( EE ` N ) ( x Btwn <. C , C >. /\ x Btwn <. B , D >. ) ) ) |
| 13 |
10 12
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. A , D >. /\ B Btwn <. A , C >. ) -> E. x e. ( EE ` N ) ( x Btwn <. C , C >. /\ x Btwn <. B , D >. ) ) ) |
| 14 |
13
|
ancomsd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> E. x e. ( EE ` N ) ( x Btwn <. C , C >. /\ x Btwn <. B , D >. ) ) ) |
| 15 |
|
simpl1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
| 16 |
|
simpr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
| 17 |
|
simpl3l |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
| 18 |
|
axbtwnid |
|- ( ( N e. NN /\ x e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( x Btwn <. C , C >. -> x = C ) ) |
| 19 |
15 16 17 18
|
syl3anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. C , C >. -> x = C ) ) |
| 20 |
|
breq1 |
|- ( x = C -> ( x Btwn <. B , D >. <-> C Btwn <. B , D >. ) ) |
| 21 |
20
|
biimpd |
|- ( x = C -> ( x Btwn <. B , D >. -> C Btwn <. B , D >. ) ) |
| 22 |
19 21
|
syl6 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( x Btwn <. C , C >. -> ( x Btwn <. B , D >. -> C Btwn <. B , D >. ) ) ) |
| 23 |
22
|
impd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ x e. ( EE ` N ) ) -> ( ( x Btwn <. C , C >. /\ x Btwn <. B , D >. ) -> C Btwn <. B , D >. ) ) |
| 24 |
23
|
rexlimdva |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. x e. ( EE ` N ) ( x Btwn <. C , C >. /\ x Btwn <. B , D >. ) -> C Btwn <. B , D >. ) ) |
| 25 |
14 24
|
syld |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> C Btwn <. B , D >. ) ) |