Metamath Proof Explorer


Theorem btwnexch3and

Description: Deduction form of btwnexch3 . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses btwnexch3and.1
|- ( ph -> N e. NN )
btwnexch3and.2
|- ( ph -> A e. ( EE ` N ) )
btwnexch3and.3
|- ( ph -> B e. ( EE ` N ) )
btwnexch3and.4
|- ( ph -> C e. ( EE ` N ) )
btwnexch3and.5
|- ( ph -> D e. ( EE ` N ) )
btwnexch3and.6
|- ( ( ph /\ ps ) -> B Btwn <. A , C >. )
btwnexch3and.7
|- ( ( ph /\ ps ) -> C Btwn <. A , D >. )
Assertion btwnexch3and
|- ( ( ph /\ ps ) -> C Btwn <. B , D >. )

Proof

Step Hyp Ref Expression
1 btwnexch3and.1
 |-  ( ph -> N e. NN )
2 btwnexch3and.2
 |-  ( ph -> A e. ( EE ` N ) )
3 btwnexch3and.3
 |-  ( ph -> B e. ( EE ` N ) )
4 btwnexch3and.4
 |-  ( ph -> C e. ( EE ` N ) )
5 btwnexch3and.5
 |-  ( ph -> D e. ( EE ` N ) )
6 btwnexch3and.6
 |-  ( ( ph /\ ps ) -> B Btwn <. A , C >. )
7 btwnexch3and.7
 |-  ( ( ph /\ ps ) -> C Btwn <. A , D >. )
8 btwnexch3
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> C Btwn <. B , D >. ) )
9 1 2 3 4 5 8 syl122anc
 |-  ( ph -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> C Btwn <. B , D >. ) )
10 9 adantr
 |-  ( ( ph /\ ps ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> C Btwn <. B , D >. ) )
11 6 7 10 mp2and
 |-  ( ( ph /\ ps ) -> C Btwn <. B , D >. )