Step |
Hyp |
Ref |
Expression |
1 |
|
btwnexch3and.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
btwnexch3and.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
btwnexch3and.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
btwnexch3and.4 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
btwnexch3and.5 |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
btwnexch3and.6 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ) |
7 |
|
btwnexch3and.7 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) |
8 |
|
btwnexch3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) → 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ) |
9 |
1 2 3 4 5 8
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) → 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝐷 〉 ) → 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) ) |
11 |
6 7 10
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐶 Btwn 〈 𝐵 , 𝐷 〉 ) |