Metamath Proof Explorer


Theorem btwnexch3and

Description: Deduction form of btwnexch3 . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses btwnexch3and.1 φN
btwnexch3and.2 φA𝔼N
btwnexch3and.3 φB𝔼N
btwnexch3and.4 φC𝔼N
btwnexch3and.5 φD𝔼N
btwnexch3and.6 φψBBtwnAC
btwnexch3and.7 φψCBtwnAD
Assertion btwnexch3and φψCBtwnBD

Proof

Step Hyp Ref Expression
1 btwnexch3and.1 φN
2 btwnexch3and.2 φA𝔼N
3 btwnexch3and.3 φB𝔼N
4 btwnexch3and.4 φC𝔼N
5 btwnexch3and.5 φD𝔼N
6 btwnexch3and.6 φψBBtwnAC
7 btwnexch3and.7 φψCBtwnAD
8 btwnexch3 NA𝔼NB𝔼NC𝔼ND𝔼NBBtwnACCBtwnADCBtwnBD
9 1 2 3 4 5 8 syl122anc φBBtwnACCBtwnADCBtwnBD
10 9 adantr φψBBtwnACCBtwnADCBtwnBD
11 6 7 10 mp2and φψCBtwnBD