Metamath Proof Explorer


Theorem btwnouttr2

Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.1 of Schwabhauser p. 30. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion btwnouttr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C Btwn A D

Proof

Step Hyp Ref Expression
1 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
2 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
3 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
4 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
5 axsegcon N A 𝔼 N C 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N C Btwn A x C x Cgr C D
6 1 2 3 3 4 5 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N C Btwn A x C x Cgr C D
7 6 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D x 𝔼 N C Btwn A x C x Cgr C D
8 simprrl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn A x
9 simprl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D B C
10 simpl2 B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D B Btwn A C
11 simprl B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn A x
12 10 11 jca B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D B Btwn A C C Btwn A x
13 12 adantl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D B Btwn A C C Btwn A x
14 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N N
15 simpl2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N A 𝔼 N
16 simpl2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B 𝔼 N
17 simpl3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N C 𝔼 N
18 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N x 𝔼 N
19 btwnexch3 N A 𝔼 N B 𝔼 N C 𝔼 N x 𝔼 N B Btwn A C C Btwn A x C Btwn B x
20 14 15 16 17 18 19 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B Btwn A C C Btwn A x C Btwn B x
21 20 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D B Btwn A C C Btwn A x C Btwn B x
22 13 21 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn B x
23 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C x Cgr C D
24 22 23 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn B x C x Cgr C D
25 simprl3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn B D
26 simpl3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N D 𝔼 N
27 14 17 26 cgrrflxd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N C D Cgr C D
28 27 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C D Cgr C D
29 25 28 jca N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn B D C D Cgr C D
30 segconeq N C 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N x 𝔼 N D 𝔼 N B C C Btwn B x C x Cgr C D C Btwn B D C D Cgr C D x = D
31 14 17 17 26 16 18 26 30 syl133anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C C Btwn B x C x Cgr C D C Btwn B D C D Cgr C D x = D
32 31 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D B C C Btwn B x C x Cgr C D C Btwn B D C D Cgr C D x = D
33 9 24 29 32 mp3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D x = D
34 33 opeq2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D A x = A D
35 8 34 breqtrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn A D
36 35 expr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B C B Btwn A C C Btwn B D C Btwn A x C x Cgr C D C Btwn A D
37 36 an32s N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D x 𝔼 N C Btwn A x C x Cgr C D C Btwn A D
38 37 rexlimdva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D x 𝔼 N C Btwn A x C x Cgr C D C Btwn A D
39 7 38 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C Btwn A D
40 39 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C Btwn A D