Metamath Proof Explorer


Theorem btwnexch2

Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of Schwabhauser p. 30. (Contributed by Scott Fenton, 14-Jun-2013)

Ref Expression
Assertion btwnexch2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A D C Btwn B D C Btwn A D

Proof

Step Hyp Ref Expression
1 breq1 B = C B Btwn A D C Btwn A D
2 1 biimpd B = C B Btwn A D C Btwn A D
3 2 adantrd B = C B Btwn A D C Btwn B D C Btwn A D
4 3 a1i N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B = C B Btwn A D C Btwn B D C Btwn A D
5 simprl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D B C
6 simprr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D B Btwn A D C Btwn B D
7 btwnintr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A D C Btwn B D B Btwn A C
8 7 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D B Btwn A D C Btwn B D B Btwn A C
9 6 8 mpd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D B Btwn A C
10 simprrr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D C Btwn B D
11 btwnouttr2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A C C Btwn B D C Btwn A D
12 11 adantr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D B C B Btwn A C C Btwn B D C Btwn A D
13 5 9 10 12 mp3and N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D C Btwn A D
14 13 exp32 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B C B Btwn A D C Btwn B D C Btwn A D
15 4 14 pm2.61dne N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A D C Btwn B D C Btwn A D