| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( B = C -> ( B Btwn <. A , D >. <-> C Btwn <. A , D >. ) ) | 
						
							| 2 | 1 | biimpd |  |-  ( B = C -> ( B Btwn <. A , D >. -> C Btwn <. A , D >. ) ) | 
						
							| 3 | 2 | adantrd |  |-  ( B = C -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) | 
						
							| 4 | 3 | a1i |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B = C -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) ) | 
						
							| 5 |  | simprl |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> B =/= C ) | 
						
							| 6 |  | simprr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) | 
						
							| 7 |  | btwnintr |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> B Btwn <. A , C >. ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> B Btwn <. A , C >. ) ) | 
						
							| 9 | 6 8 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> B Btwn <. A , C >. ) | 
						
							| 10 |  | simprrr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> C Btwn <. B , D >. ) | 
						
							| 11 |  | btwnouttr2 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) | 
						
							| 13 | 5 9 10 12 | mp3and |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> C Btwn <. A , D >. ) | 
						
							| 14 | 13 | exp32 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B =/= C -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) ) | 
						
							| 15 | 4 14 | pm2.61dne |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) |