| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq1 |
|- ( B = C -> ( B Btwn <. A , D >. <-> C Btwn <. A , D >. ) ) |
| 2 |
1
|
biimpd |
|- ( B = C -> ( B Btwn <. A , D >. -> C Btwn <. A , D >. ) ) |
| 3 |
2
|
adantrd |
|- ( B = C -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) |
| 4 |
3
|
a1i |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B = C -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) ) |
| 5 |
|
simprl |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> B =/= C ) |
| 6 |
|
simprr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) |
| 7 |
|
btwnintr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> B Btwn <. A , C >. ) ) |
| 8 |
7
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> B Btwn <. A , C >. ) ) |
| 9 |
6 8
|
mpd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> B Btwn <. A , C >. ) |
| 10 |
|
simprrr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> C Btwn <. B , D >. ) |
| 11 |
|
btwnouttr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) |
| 12 |
11
|
adantr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) |
| 13 |
5 9 10 12
|
mp3and |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) ) ) -> C Btwn <. A , D >. ) |
| 14 |
13
|
exp32 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B =/= C -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) ) |
| 15 |
4 14
|
pm2.61dne |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , D >. /\ C Btwn <. B , D >. ) -> C Btwn <. A , D >. ) ) |