| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simp2r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 3 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 4 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 5 |  | necom |  |-  ( B =/= C <-> C =/= B ) | 
						
							| 6 | 5 | a1i |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B =/= C <-> C =/= B ) ) | 
						
							| 7 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 8 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 9 | 1 2 4 7 8 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 10 |  | btwncom |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ B e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. B , D >. <-> C Btwn <. D , B >. ) ) | 
						
							| 11 | 1 7 2 3 10 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. B , D >. <-> C Btwn <. D , B >. ) ) | 
						
							| 12 | 6 9 11 | 3anbi123d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) <-> ( C =/= B /\ B Btwn <. C , A >. /\ C Btwn <. D , B >. ) ) ) | 
						
							| 13 |  | 3ancomb |  |-  ( ( C =/= B /\ B Btwn <. C , A >. /\ C Btwn <. D , B >. ) <-> ( C =/= B /\ C Btwn <. D , B >. /\ B Btwn <. C , A >. ) ) | 
						
							| 14 | 12 13 | bitrdi |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) <-> ( C =/= B /\ C Btwn <. D , B >. /\ B Btwn <. C , A >. ) ) ) | 
						
							| 15 | 14 | biimpa |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> ( C =/= B /\ C Btwn <. D , B >. /\ B Btwn <. C , A >. ) ) | 
						
							| 16 |  | btwnouttr2 |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( C =/= B /\ C Btwn <. D , B >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) ) | 
						
							| 17 | 1 3 7 2 4 16 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C =/= B /\ C Btwn <. D , B >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> ( ( C =/= B /\ C Btwn <. D , B >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) ) | 
						
							| 19 | 15 18 | mpd |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> B Btwn <. D , A >. ) | 
						
							| 20 | 1 2 3 4 19 | btwncomand |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) ) -> B Btwn <. A , D >. ) | 
						
							| 21 | 20 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B =/= C /\ B Btwn <. A , C >. /\ C Btwn <. B , D >. ) -> B Btwn <. A , D >. ) ) |