| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 2 |  | simp2r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 3 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 4 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 5 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) | 
						
							| 7 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 8 |  | btwncom |  |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) ) | 
						
							| 9 | 1 4 3 7 8 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) ) | 
						
							| 10 | 6 9 | anbi12d |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) <-> ( B Btwn <. C , A >. /\ C Btwn <. D , A >. ) ) ) | 
						
							| 11 |  | ancom |  |-  ( ( B Btwn <. C , A >. /\ C Btwn <. D , A >. ) <-> ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) ) | 
						
							| 12 | 10 11 | bitrdi |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) <-> ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) ) ) | 
						
							| 13 |  | btwnexch2 |  |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) ) | 
						
							| 14 | 1 7 4 2 3 13 | syl122anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) ) | 
						
							| 15 | 12 14 | sylbid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> B Btwn <. D , A >. ) ) | 
						
							| 16 |  | btwncom |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. D , A >. <-> B Btwn <. A , D >. ) ) | 
						
							| 17 | 1 2 7 3 16 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. D , A >. <-> B Btwn <. A , D >. ) ) | 
						
							| 18 | 15 17 | sylibd |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> B Btwn <. A , D >. ) ) |