Metamath Proof Explorer


Theorem btwnexch

Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of Schwabhauser p. 30. (Contributed by Scott Fenton, 24-Sep-2013)

Ref Expression
Assertion btwnexch
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> B Btwn <. A , D >. ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN )
2 simp2r
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) )
3 simp2l
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) )
4 simp3l
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) )
5 btwncom
 |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) )
6 1 2 3 4 5 syl13anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) )
7 simp3r
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) )
8 btwncom
 |-  ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) )
9 1 4 3 7 8 syl13anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) )
10 6 9 anbi12d
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) <-> ( B Btwn <. C , A >. /\ C Btwn <. D , A >. ) ) )
11 ancom
 |-  ( ( B Btwn <. C , A >. /\ C Btwn <. D , A >. ) <-> ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) )
12 10 11 bitrdi
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) <-> ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) ) )
13 btwnexch2
 |-  ( ( N e. NN /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) )
14 1 7 4 2 3 13 syl122anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) )
15 12 14 sylbid
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> B Btwn <. D , A >. ) )
16 btwncom
 |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. D , A >. <-> B Btwn <. A , D >. ) )
17 1 2 7 3 16 syl13anc
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. D , A >. <-> B Btwn <. A , D >. ) )
18 15 17 sylibd
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> B Btwn <. A , D >. ) )