| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
| 2 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 3 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 4 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 5 |
|
btwncom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
| 6 |
1 2 3 4 5
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. A , C >. <-> B Btwn <. C , A >. ) ) |
| 7 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
| 8 |
|
btwncom |
|- ( ( N e. NN /\ ( C e. ( EE ` N ) /\ A e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) ) |
| 9 |
1 4 3 7 8
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( C Btwn <. A , D >. <-> C Btwn <. D , A >. ) ) |
| 10 |
6 9
|
anbi12d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) <-> ( B Btwn <. C , A >. /\ C Btwn <. D , A >. ) ) ) |
| 11 |
|
ancom |
|- ( ( B Btwn <. C , A >. /\ C Btwn <. D , A >. ) <-> ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) ) |
| 12 |
10 11
|
bitrdi |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) <-> ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) ) ) |
| 13 |
|
btwnexch2 |
|- ( ( N e. NN /\ ( D e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) ) |
| 14 |
1 7 4 2 3 13
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( C Btwn <. D , A >. /\ B Btwn <. C , A >. ) -> B Btwn <. D , A >. ) ) |
| 15 |
12 14
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> B Btwn <. D , A >. ) ) |
| 16 |
|
btwncom |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ D e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( B Btwn <. D , A >. <-> B Btwn <. A , D >. ) ) |
| 17 |
1 2 7 3 16
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( B Btwn <. D , A >. <-> B Btwn <. A , D >. ) ) |
| 18 |
15 17
|
sylibd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( B Btwn <. A , C >. /\ C Btwn <. A , D >. ) -> B Btwn <. A , D >. ) ) |