Metamath Proof Explorer


Theorem btwnexch

Description: Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of Schwabhauser p. 30. (Contributed by Scott Fenton, 24-Sep-2013)

Ref Expression
Assertion btwnexch N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C C Btwn A D B Btwn A D

Proof

Step Hyp Ref Expression
1 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
2 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N
3 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
4 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
5 btwncom N B 𝔼 N A 𝔼 N C 𝔼 N B Btwn A C B Btwn C A
6 1 2 3 4 5 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C B Btwn C A
7 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
8 btwncom N C 𝔼 N A 𝔼 N D 𝔼 N C Btwn A D C Btwn D A
9 1 4 3 7 8 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn A D C Btwn D A
10 6 9 anbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C C Btwn A D B Btwn C A C Btwn D A
11 ancom B Btwn C A C Btwn D A C Btwn D A B Btwn C A
12 10 11 bitrdi N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C C Btwn A D C Btwn D A B Btwn C A
13 btwnexch2 N D 𝔼 N C 𝔼 N B 𝔼 N A 𝔼 N C Btwn D A B Btwn C A B Btwn D A
14 1 7 4 2 3 13 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C Btwn D A B Btwn C A B Btwn D A
15 12 14 sylbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C C Btwn A D B Btwn D A
16 btwncom N B 𝔼 N D 𝔼 N A 𝔼 N B Btwn D A B Btwn A D
17 1 2 7 3 16 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn D A B Btwn A D
18 15 17 sylibd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C C Btwn A D B Btwn A D