Metamath Proof Explorer


Theorem btwnexchand

Description: Deduction form of btwnexch . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses btwnexchand.1 φ N
btwnexchand.2 φ A 𝔼 N
btwnexchand.3 φ B 𝔼 N
btwnexchand.4 φ C 𝔼 N
btwnexchand.5 φ D 𝔼 N
btwnexchand.6 φ ψ B Btwn A C
btwnexchand.7 φ ψ C Btwn A D
Assertion btwnexchand φ ψ B Btwn A D

Proof

Step Hyp Ref Expression
1 btwnexchand.1 φ N
2 btwnexchand.2 φ A 𝔼 N
3 btwnexchand.3 φ B 𝔼 N
4 btwnexchand.4 φ C 𝔼 N
5 btwnexchand.5 φ D 𝔼 N
6 btwnexchand.6 φ ψ B Btwn A C
7 btwnexchand.7 φ ψ C Btwn A D
8 btwnexch N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B Btwn A C C Btwn A D B Btwn A D
9 1 2 3 4 5 8 syl122anc φ B Btwn A C C Btwn A D B Btwn A D
10 9 adantr φ ψ B Btwn A C C Btwn A D B Btwn A D
11 6 7 10 mp2and φ ψ B Btwn A D