Metamath Proof Explorer


Theorem btwnexchand

Description: Deduction form of btwnexch . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses btwnexchand.1 ( 𝜑𝑁 ∈ ℕ )
btwnexchand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
btwnexchand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
btwnexchand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
btwnexchand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
btwnexchand.6 ( ( 𝜑𝜓 ) → 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ )
btwnexchand.7 ( ( 𝜑𝜓 ) → 𝐶 Btwn ⟨ 𝐴 , 𝐷 ⟩ )
Assertion btwnexchand ( ( 𝜑𝜓 ) → 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ )

Proof

Step Hyp Ref Expression
1 btwnexchand.1 ( 𝜑𝑁 ∈ ℕ )
2 btwnexchand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 btwnexchand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 btwnexchand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 btwnexchand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
6 btwnexchand.6 ( ( 𝜑𝜓 ) → 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ )
7 btwnexchand.7 ( ( 𝜑𝜓 ) → 𝐶 Btwn ⟨ 𝐴 , 𝐷 ⟩ )
8 btwnexch ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐶 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) → 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) )
9 1 2 3 4 5 8 syl122anc ( 𝜑 → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐶 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) → 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) )
10 9 adantr ( ( 𝜑𝜓 ) → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐶 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) → 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ ) )
11 6 7 10 mp2and ( ( 𝜑𝜓 ) → 𝐵 Btwn ⟨ 𝐴 , 𝐷 ⟩ )